2 resultados para Portuguese security scale
em Publishing Network for Geoscientific
Resumo:
The assemblages of marine sediments on the SW Iberian shelf have been controlled by contributions from distinct sources, which have varied in response to environmental changes since the Last Glacial Maximum (LGM). The rapid, decadal scale Mediterranean overturning circulation permits mixing of suspended particles from the entire Mediterranean Sea. They are entrained into the suspended particulate matter (SPM) carried by Mediterranean Outflow Water (MOW), which enters the eastern North Atlantic through the Strait of Gibraltar and spreads at intermediate depths in the Gulf of Cadiz and along the Portuguese continental margin. Other major sediment sources that have contributed to the characteristics and budget of SPM along the flow path of MOW on the SW Iberian shelf are North African dust and river-transported particles from the Iberian Peninsula. To reconstruct climate- and circulation-driven changes in the supply of sediments over the past ~23000 cal yr B.P., radiogenic Nd, Sr and Pb isotope records of the clay-size sediment fraction were obtained from one gravity core in the Gulf of Cadiz (577 m water depth) and from two gravity cores on the Portuguese shelf (1745 m, 1974 m water depth). These records are supplemented by time series analyses of clay mineral abundances from the same set of samples. Contrary to expectations, the transition from the LGM to the Holocene was not accompanied by strong changes in sediment provenance or transport, whereas Heinrich Event 1 (H1) and the African Humid Period (AHP) were marked by significantly different isotopic signatures reflecting changes in source contributions caused by supply of ice rafted material originating from the North American craton during H1 and diminished supply of Saharan dust during the AHP. The data also reveal that the timing of variations in the clay mineral abundances was decoupled from that of the radiogenic isotope signatures.
Resumo:
Sea surface temperature (SST), marine productivity, and fluvial input have been reconstructed for the last 11.5 calendar (cal) ka B.P. using a high-resolution study of C37 alkenones, coccolithophores, iron content, and higher plant n-alkanes and n-alkan-1-ols in sedimentary sequences from the inner shelf off the Tagus River Estuary in the Portuguese Margin. The SST record is marked by a continuous decrease from 19C, at 10.5 and 7 ka, to 15C at present. This trend is interrupted by a fall from 18C during the Roman and Medieval Warm Periods to 16C in the Little Ice Age. River input was very low in the early Holocene but increased in the last 3 cal ka B.P. in association with an intensification of agriculture and deforestation and possibly the onset of the North Atlantic Oscillation/Atlantic Multidecadal Oscillation modes of variability. River influence must have reinforced the marine cooling trend relative to the lower amplitude in similar latitude sites of the eastern Atlantic. The total concentration of alkenones reflects river-induced productivity, being low in the early Holocene but increasing as river input became more important. Rapid cooling, of 1-2C occurring in 250 years, is observed at 11.1, 10.6, 8.2, 6.9, and 5.4 cal ka B.P. The estimated age of these events matches the ages of equivalent episodes common in the NE Atlantic- Mediterranean region. This synchronicity reveals a common widespread climate feature, which considering the twentieth century analog between colder SSTs and negative North Atlantic Oscillation (NAO), is likely to reflect periods of strong negative NAO.