6 resultados para Population genetic strcuture
em Publishing Network for Geoscientific
Population genetic and dispersal modeling data for Bathymodiolus mussels from the Mid-Atlantic Ridge
Resumo:
The zip folder comprises a text file and a gzipped tar archive. 1) The text file contains individual genotype data for 90 SNPs, 9 microsatellites and the mitochondrial ND4 gene that were determined in deep-sea hydrothermal vent mussels from the Mid-Atlantic Ridge (genus Bathymodiolus). Mussel specimens are grouped according to the population (pop)/location from which they have been sampled (first column). The remaining columns contain the respective allele/haplotype codes for the different genetic loci (names in the header line). The data file is in CONVERT format and can be directly transformed into different input files for population genetic statistics. 2) The tar archive contains NetCDF files with larval dispersal probabilities for simulated annual larval releases between 1998 and 2007. For each simulated vent location (Menez Gwen, Lucky Strike, Rainbow, Vent 1-10) two NetCDF files are given, one for an assumed pelagic larval duration of 1 year and the other one for an assumed pelagic larval duration of 6 months (6m).
Resumo:
Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Resumo:
Population genetics of two species of mass copepods Undinula darwini and Calanus australis, with different range types, is investigated. Both species exhibit considerable genetic diversity, especially C. australis (observed heterozygoticity = 0.36), which inhabits a variable biotope in the zone of the Peru current. Samples of both species exhibited highly significant genetic heterogeneity as well as heterozygote deficiency compared with the situation expected from the Hardy-Weinberg law. Contribution of distance isolation to genetic differentiation of populations is estimated. Gene drift is discussed as a source of heterogeneity in populations of planktic copepods. Possible aspects of population genetic research on marine plank-tic crustaceans are discussed.
Resumo:
Many recent studies have found genetically differentiated populations in microorganisms despite potentially high dispersal. We designed a study to specifically examine the importance of physical dispersal barriers, i.e. geographic distance and lack of hydrological connectivity, in restricting gene flow and enhancing divergence in limnic microorganisms. We focused on the nuisance microalga Gonyostomum semen, which has recently expanded in northern Europe and differentiated into genetically distinct populations. Gonyostomum semen was sampled from six lakes distributed in two adjacent watersheds, which thereby comprised, both connected and non-connected lakes. The individual isolates were genotyped by Amplified Fragment Length Polymorphism. Several lake populations were differentiated from each other, but connectivity within watersheds could not explain the observed population genetic pattern. However, isolation by distance was moderate and might limit the gene flow among distant populations. In addition, we found low, but significant linkage disequilibrium, which indicates regular sexual recombination in this species, despite its high degree of asexual reproduction. Therefore, we conclude that the genetic properties of microalgae with occasional sexual reproduction essentially mirror regularly recombining species. Furthermore, the data indicated bottlenecks supporting the hypothesized recent range expansion of this species.
Resumo:
Pumas are one of the most studied terrestrial mammals because of their widespread distribution, substantial ecological impacts, and conflicts with humans. Extensive efforts, often employing genetic methods, are undertaken to manage this species. However, the comparison of population genetic data is difficult because few of the microsatellite loci chosen are shared across research programs. Here, we describe the development of PumaPlex, a high-throughput assay to genotype 25 single nucleotide polymorphisms in pumas. We validated PumaPlex in more than 700 North American pumas (Puma concolor couguar), and demonstrated its ability to generate reproducible genotypes and accurately identify individuals. Furthermore, we compared PumaPlex with traditional genotyping of 12 microsatellite loci in fecal DNA samples and found that PumaPlex produced significantly more genotypes with fewer false alleles. PumaPlex promotes the cross-laboratory comparison of genotypes, is easily expandable in the future, and is a valuable tool for the genetic monitoring and management of North American puma populations.