11 resultados para Polymerase active site
em Publishing Network for Geoscientific
Resumo:
The deployment of LOOME was performed by lowering the LOOME frame by winch, followed by positioning of the surface sensors across the most active site by ROV. The frame was placed on an inactive slab of hydrates, eastwards and adjacent to the hot spot. To the frame autonomous recording current meter was mounted, recording physical oceanography variables approximately two to three meter above the seafloor.
Resumo:
The deployment of LOOME was performed by lowering the LOOME frame by winch, followed by positioning of the surface sensors across the most active site by ROV. The frame was placed on an inactive slab of hydrates, eastwards and adjacent to the hot spot. As part of the LOOME-frame Sun & Sea multi parameter probe CTD 60M was deployed approximately 3 m above the seafloor. The device was rated to 2000 m water depth. As energy supply a DeepSea Power & Light SeaBattery (12V) was used, which allows a run time of the CTD 60M of more than a year. The memory capacity of the probe is sufficient to allow data storage for more than a year as well, applying a time resolution of better than one measurement per minute. The probe was configured to start running when the energy supply is connected and a magnetic switch is closed. An LED on top of CTD is indicating the current state of the probe. The major aim was to record the temperature and pressure regime in the bottom water at the Håkon Mosby Mud Volcano.
Resumo:
Primary sulfides from cores of ODP Holes 158-957M, 158-957C, and 158-957H on the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°08'N) have been studied for concentrations of several chemical elements. Based on 262 microprobe analyses it has been found that the sulfides have extremely heterogeneous distribution of noble metals (Au, Ag, Pt, and Pd) and several associated elements (Hg, Co, and Se). Noble metals are arranged in the following order in terms of decreasing abundance, i.e. concentration level above detection limits (the number of analyses containing a specific element is given in parentheses): Au (65), Ag (46), Pt (21), and Pd (traces). The associated trace elements have the following series: Co (202), Hg (132), and Se (49). The main carriers of "invisible" portion of the noble metals are represented by pyrite (Au, Hg), marcasite and pyrite (Ag, Co), sphalerite and chalcopyrite (Pt, Pd), and chalcopyrite (Se). Noble metal distribution in sulfides reveals a lateral zonality: maximal concentrations and abundance of Au in chalcopyrite (or Pt and Ag in chalcopyrite and pyrite) increase from the periphery (Hole 957H) to the center (holes 957C and 957M) of the hydrothermal mound, while Au distribution in pyrite displays a reversed pattern. Co concentration increases with depth. Vertical zonality in distribution of the elements mentioned above and their response to evolution of ore genesis are under discussion in the paper.