3 resultados para Police Deployments and Reinforcements
em Publishing Network for Geoscientific
Resumo:
Net ecosystem calcification rates (NEC) and net photosynthesis (NP) were determined from CO2 seawater parameters on the barrier coral reef of Kaneohe Bay, Oahu, Hawaii. Autosamplers were deployed to collect samples on the barrier reef every 2 hours for six 48-hour deployments, two each in June 2008, August 2009, and January/February 2010. NEC on the Kaneohe Bay barrier reef increased throughout the day and decreased at night. Net calcification continued at low rates at night except for six time periods when net dissolution was measured. The barrier reef was generally net photosynthetic (positive NP) during the day and net respiring (negative NP) at night. NP controlled the diel cycles of the partial pressure of CO2 (pCO2) and aragonite saturation state resulting in high daytime aragonite saturation state levels when calcification rates were at their peak. However, the NEC and NP diel cycles can become decoupled for short periods of time (several hours) without affecting calcification rates. On a net daily basis, net ecosystem production (NEP) of the barrier reef was found to be sometimes net photosynthetic and sometimes net respiring and ranged from -378 to 80 mmol m-2 d-1 when calculated using simple box models. Daily NEC of the barrier reef was positive (net calcification) for all deployments and ranged from 174 to 331 mmol CaCO3 m-2 d-1. Daily NEC was strongly negatively correlated with average daily pCO2 (R2 = 0.76) which ranged from 431 to 622 µatm. Daily NEC of the Kaneohe Bay barrier reef is similar to or higher than daily NEC measured on other coral reefs even though aragonite saturation state levels (mean aragonite saturation state = 2.85) are some of the lowest measured in coral reef ecosystems. It appears that while calcification rate and ?arag are correlated within a single coral reef ecosystem, this relationship does not necessarily hold between different coral reef systems. It can be expected that ocean acidification will not affect coral reefs uniformly and that some may be more sensitive to increasing pCO2 levels than others.
Resumo:
Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers. In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term studies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material.
Resumo:
A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g/m**2/y, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10**3/m**2/d). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.