4 resultados para Poiseulli, endotracheal tubes, cuff, pediatric, airway

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a consequence of anthropogenic CO2-driven ocean acidification (OA), coastal waters are becoming increasingly challenging for calcifiers due to reductions in saturation states of calcium carbonate (CaCO3) minerals. The response of calcification rate is one of the most frequently investigated symptoms of OA. However, OA may also result in poor quality calcareous products through impaired calcification processes despite there being no observed change in calcification rate. The mineralogy and ultrastructure of the calcareous products under OA conditions may be altered, resulting in changes to the mechanical properties of calcified structures. Here, the warm water biofouling tubeworm, Hydroides elegans, was reared from larva to early juvenile stage at the aragonite saturation state (Omega A) for the current pCO2 level (ambient) and those predicted for the years 2050, 2100 and 2300. Composition, ultrastructure and mechanical strength of the calcareous tubes produced by those early juvenile tubeworms were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and nanoindentation. Juvenile tubes were composed primarily of the highly soluble CaCO3 mineral form, aragonite. Tubes produced in seawater with aragonite saturation states near or below one had significantly higher proportions of the crystalline precursor, amorphous calcium carbonate (ACC) and the calcite/aragonite ratio dramatically increased. These alterations in tube mineralogy resulted in a holistic deterioration of the tube hardness and elasticity. Thus, in conditions where Omega A is near or below one, the aragonite-producing juvenile tubeworms may no longer be able to maintain the integrity of their calcification products, and may result in reduced survivorship due to the weakened tube protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vestimentiferan tube worms are prominent members of modern methane seep communities and are totally reliant as adults on symbiotic sulphide-oxidizing bacteria for their nutrition. The sulphide is produced in the sediment by a biochemical reaction called the anaerobic oxidation of methane (AOM). A well-studied species from the Gulf of Mexico shows that seep vestimentiferans 'mine' sulphide from the sediment using root-like, thin walled, permeable posterior tube extensions, which can also be used to pump sulphate and possibly hydrogen ions from the soft tissue back into the sediment to increase the local rate of AOM. The 'root-balls' of exhumed seep vestimentiferans are intimately associated with carbonate nodules, which are a result of AOM. We have studied vestimentiferan specimens and associated carbonates from seeps at the Kouilou pockmark field on the Congo deep-sea fan and find that some of the posterior 'root' tubes of living specimens are enclosed with carbonate indurated sediment and other, empty examples are partially or completely replaced by the carbonate mineral aragonite. This replacement occurs from the outside of the tube wall inwards and leaves fine-scale relict textures of the original organic tube wall. The process of mineralization is unknown, but is likely a result of post-mortem microbial decay of the tube wall proteins by microorganisms or the precipitation from locally high flux of AOM derived carbonate ions. The aragonite-replaced tubes from the Kouilou pockmarks show similar features to carbonate tubes in ancient seep deposits and make it more likely that many of these fossil tubes are those of vestimentiferans. These observations have implications for the supposed origination of this group, based on molecular divergence estimates.