11 resultados para Platform of contact
em Publishing Network for Geoscientific
Resumo:
Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01' S and 10°24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low d34Spyrite values (average -28.8 per mill) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C15:0, i/ai-C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.
Resumo:
Site 639, drilled during Leg 103 of the Ocean Drilling Program, penetrated an Upper Jurassic to Lower Cretaceous carbonate platform on a tilted fault block along the Galicia margin off the northwest Iberian Peninsula. The carbonate platform is composed primarily of a sequence of dolomite overlying limestone. Samples were analyzed for mineral chemistry, stable isotope geochemistry, fluid inclusion microthermometry, and volatile contents and by dolomite pyrolysis mass spectrometry for trace sulfate minerals. The dolomite recovered from the Galicia margin at Site 639 formed during shallow burial from sulfate-bearing, hypersaline brines at slightly elevated temperatures. The light oxygen isotopic signatures of the dolomite are interpreted as the result of the evaporative loop and slightly elevated temperatures during dolomite formation or from reequilibration at higher temperatures during deeper burial. The hypersalinity is interpreted to be associated with a nearby, shallow restricted basin that formed during rifting of the Iberian margin from Newfoundland. The dolomitization of the platform is therefore a by-product of the rifting.
Resumo:
Barremian through uppermost Aptian strata from ODP Hole 641C, located upslope of a tilted fault block on the Galicia margin (northwest Spain), are syn-rift sediments deposited in the bathyal realm and are characterized by rapid sedimentation from turbidity currents and debris flows. Calcarenite and calcirudite turbidites contain shallow-water carbonate, terrigenous, and pelagic debris, in complete or partial Bouma sequences. These deposits contain abraded micritized bioclasts of reefal debris, including rudist fragments. The youngest turbidite containing shallow-water carbonate debris at Site 641 defines the boundary between syn-rift and post-rift sediments; this is also the boundary between Aptian and Albian sediments. Some Aptian turbidites are partially silicified, with pore-filling chalcedony and megaquartz. Adjacent layers of length-fast and -slow chalcedony are succeeded by megaquartz as the final pore-filling stage within carbonate reef debris. Temperatures of formation, calculated from the oxygen isotopic composition of the authigenic quartz, are relatively low for formation of quartz but are relatively warm for shallow burial depths. This quartz cement may be interpreted as a rift-associated precipitate from seawater-derived epithermal fluids that migrated along a fault associated with the tilted block and were injected into the porous turbidite beds. These warm fluids may have cooled rapidly and precipitated silica at the boundaries of the turbidite beds as a result of contact with cooler pore waters. The color pattern in the quartz cement, observed by cathodoluminescence and fluorescence techniques, and changes in the trace lement geochemistry mimic the textural change of the different quartz layers and indicates growth synchronism of the different quartz phases. Fluorescence petrography of neomorphosed low-Mg-calcite bioclasts in the silicified turbidites shows extensive zonation and details of replacive crystal growth in the bioclasts that are not observed by cathodoluminescence. Fluorescence microscopy also reveals a competitive growth history during neomorphism of the adjacent crystals in an altered carbonate bioclast. Barremian-Aptian background pelagic sediments from Hole 641C have characteristics similar to pelagic sediments from the Blake-Bahama Formation described by Jansa et al. (1979) from the western North Atlantic. Sediments at this site differ from the Blake-Bahama Formation type locality in that the Barremian-Aptian pelagic sediments have a higher percentage of dark calcareous claystone and some turbidites are silicified at Site 641. The stable isotopic composition of the pelagic marlstones from Site 641 is similar to those of other Berriasian-Aptian pelagic sediments from the Atlantic.
Resumo:
Recent phosphorites from the Namibian shelf are characterized by low REE contents, depletion in REE compared to host sediments and sharp deficiency of lanthanum and europium. In Late Quaternary and Pre-Quaternary phosphorites from ocean shelves REE contents and patterns in general are the same as in host sediments. Phosphorites from seamounts are enriched in REE compared to shelf phosphorites and their patterns are close to one of seawater. Behavior of REE in shelf phosphorites is determined by the fact that in early stages of phosphorite formation REE are associated not primarily with phosphate, but with organic matter and terrigenous impurities. Only in the later stages of diagenesis phosphate begins to play a leading role in concentration of REE. In metasomatic phosphorites on seamounts concentration of REE depends on age and depth of these rocks, i.e. it is determined by duration and conditions of contact with sea water.
Resumo:
We undertook a quantitative study of Thecosomata shells (pelagic gastropods) and their remains in Quaternary foraminiferal oozes deposited on the tilted calcareous platform of the Bougainville Guyot (Hole 831 A), and in the late Quaternary volcanic siltstones, claystones and sandy interbeds on the upper forearc slope of the central New Hebrides Island Arc (Hole 830A). The distribution of the species is based on the identification of adult shells, juvenile stages, protoconchs, and characteristic shell fragments. By studying thecosomatous shells using a scanning electron microscope (SEM), we were able to specify the fine microstructure of the coiled Limacina inflata and compare it with the rod-type crossed-lamellar structure of some other Limacina species, as well as with the helical structure of the Cavoliniidae.
Resumo:
The Albian-Cenomanian sediments in Holes 627B and 635B contain diverse dinoflagellate-cyst assemblages, which show affinities with coeval assemblages from offshore Morocco and northwest Europe. A total of 34 samples were analyzed from the shallow-water platform sediments and neritic marly chalk of Hole 627B and from the argillaceous chalk and limestone of Hole 635B. Dinoflagellate cysts indicate that the top of the shallow-water platform drilled at Hole 627B must be attributed to the late Albian. Dinocysts also date the drowning of the carbonate platform of the Blake Plateau. This drowning started in the latest Albian (Vraconian) and continued into the Cenomanian. The site area changed from an inner to intermediate or outer(?) neritic environment. The area around Hole 635B from the late Albian appears to have been situated in a deeper environment than the area around Hole 627B during the same period. The new dinoflagellate-cyst species Compositosphaeridiuml bahamaensis n. sp., Maghrebinia breviornata n. sp., and Subtilisphaeral habibi n. sp. are described, and Pervosphaeridium truncatum is emended. Additional taxonomic remarks about other species are included.
Resumo:
The classic paleotemperature record based on d18O data from pelagic foraminiferal calcite suggests that equatorial sea-surface temperatures during the Maastrichtian (~12-20°C) were much cooler than today (~27-29°C). Such cool equatorial temperatures contradict basic theories of tropical atmospheric and ocean dynamics. We report d18O data from remarkably well preserved rudist aragonite and magnesian calcite cements of Maastrichtian age (~69+/-1 Ma) from the carbonate platform of Wodejebato guyot in the western Pacific. These data suggest that equatorial sea-surface temperatures in the Maastrichtian (best estimate ~27-32°C) were at least as warm as today. This finding helps reconcile the geologic d18O record with ocean-atmospheric dynamic theory and implies a reduction in the poleward heat flux required by global climate simulations of greenhouse conditions.
Resumo:
The monograph focuses on the analysis of data addressing the problem of H2S contamination and oxic-anoxic interface in the Black Sea. Regularities of the fine structure of vertical distribution of oxygen, hydrogen sulfide, biogenic elements, organic substances, suspended matter, and metals of the iron-manganese group in the area of contact of aerobic and anaerobic waters have been revealed. Also effects of biochemical, physico-chemical and dynamic processes on their vertical distribution have been examined. Sulfate reduction in seawater and bottom sediments has been studied. Quantitative estimates of H2S fluxes at the water - bottom sediment and O2-H2S interfaces have been done. Features of H2S oxidation have been studied, its budget in the Black Sea has been calculated. Multiyear spatial-temporal variability of the oxic-anoxic interface has been investigated.