7 resultados para Pioneers

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: The stratigraphy of the Shackleton Range established by Stephenson (1966) and Clarkson (1972) was revised by results of the German Expedition GEISHA 1987/88. The "Turnpike Bluff Group" does not form a stratigraphic unit. The stratigraphic correlation of its formations is still a matter of discussion. The following four formations are presumed to belong to different units: The Stephenson Bastion Formation and Wyeth Heights Formation are probably of Late Precambrian age. The Late Precambrian Watts Needle Formation, which lies unconformably on the Read Group, is an independant unit which has to be separated from the "Turnpike Bluff Group". The Mount Wegener Formation has been thrusted over the Watts Needle Formation. Early Cambrian fossils (Oldhamia sp., Epiphyton sp., Botomaella (?) sp. and echinoderms) were found in the Mt. Wegener Formation in the Read Mountains. The Middle Cambrian trilobite shales on Mount Provender, which form the Haskard Highlands Formation, are possibly in faulted contact with the basement complex (Pioneers and Stratton Groups). They are overlain by the Blaiklock Glacier Group, for which an Ordovician age is indicated by trilobite tracks and trails, low inclination of the paleomagnetic field and the similarity to the basal units of the Table Mountain Quartzite in South Africa. The Watts Needle Formation represents epicontinental shelf sediments, the Mount Wegener Formation was deposited in a (continental) back-arc environment, and the Blaiklock Glacier Group is a typical molasse sediment of the Ross Orogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages of distinctive taxonomic composition occur at the top of benthic fossil-free black shales which correspond to the anoxic event at the Cenomanian/Turonian boundary in the North Atlantic abyssal DSDP/ODP sites 386, 398, 603 and 641. These assemblages consist of minute, thin-walled agglutinated foraminifera with low specific diversity of 2 to 4 species, variable abundance and dominance of few taxa (Haplophragmoides, Rhizammina and Glomospira). The species are inferred to be opportunistic, able to survive in low-oxygen environments and to be pioneers recolonizing the seafloor after cessation of bottom-water anoxia. Most species are characterized by test morphologies with high surface/volume ratios and single-layered wall structures, with loosely agglutinated grains, and small amounts of organic cement for agglutination. These features are best observed in material from ODP Hole 641A which has exceptional foraminiferai preservation because of its shallow burial depth. The successive appearance of benthic foraminifera after the anoxic event is probably controlled by the continuous reoccurrence of more oxygenated bottom- and interstitial-water conditions. With the final development of oxic bottom-water conditions in the Turonian, a rapid radiation of deep-water agglutinated foraminifera occurred in the North Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the GEISHA expedition (Geologische Expedition in die Shackleton Range 1987/88), the Pioneers Escarpment was visited and sampled extensively for the first time. Most of the rock types encountered represent amphibolite facies metamorphics, but evidence for granulite facies conditions was found in cores of garnet. These conditions must have been at least partly reached during the peak of metamorphism. For the Pioneers Escarpment a varicolored succession of sedimentary and bimodal volcanic origin is typical. It comprises: quartzites muscovite quartzite, sericite quartzite, fuchsite quartzite, garnet-quartz schists etc.; pelites: mica schists and plagioclase or plagioclase-microcline gneisses, aluminous schists; marls and carbonates: grey meta-limestones, carbonaceous quartzites, but also pure white, often fine-grained, saccharoidal marble, or a variety of tremolite marble, olivine (forsterite) marble, diopside-clinopyroxene-tremolite marble, etc.; basic volcanic rocks: amphibole fels, amphibolite schist, garnet amphibolite, and acidic to intermediate volcanic rocks: garnet-biotite schist, epidote-biotite-plagioclase gneiss, microcline gneiss. These rocks are considered to be a supracrustal unit, called the Pioneers Group. In the easternmost parts of the Pioneers Escarpment, e.g. at Vindberget, nonmetamorphic shales, sandstones and greywackes crop out, which are cover rocks of possibly Jurassic age. These metasediments, which represent a quartz-pelite-carbonate (QPC) association, indicate that deposition took place on a stable shelf, i.e. on the submerged rim of a craton. Marine shallow-water sedimentation including marls and aluminous clays form the protoliths. The volcanics may be part of a bimodal volcanics-arkose-conglomerate (BVAC) association. Geochemical analyses support the assumption of volcanic protoliths. This is demonstrated especially by the elevated amounts of the immobile, incompatible high-field-strength elements (HFSE) Nb, Ta, Ti, Y, and Zr encountered in some of the gneisses. Microscopic investigation suggests the existence of ortho-amphibolites. This is confirmed by the geochemistry. A bimodal volcanic association is evident. The amphibolites plot in both the tholeiite and calc-alkaline fields. The acidic volcanics are mainly rhyolitic. The sediments and volcanics were subjected to conditions of 10-11 kbar and 600°C during the peak of metamorphism, i.e. granulite facies metamorphism, which can be deduced from the Fe mole ratios of 0.71-0.73 in the garnet cores. Due to the relatively low temperatures, no anatectic melting took placc. The rims of the garnets show a Fe mole ratio of 0.84-0.86, and the coexisting mineral association garnet-biotite-staurolite-kyanite indicate amphibolite facies. The thermobarometry shows P-T conditions of 5-6 kbar and 570-580°C for this stage. The metamorphic history indicates deep burial at depths down to 35 km (subduction?) i.e. high pressure metamorphism, followed by pressure release due to uplift associated with retrograde metamorphism. This may have happened during a pre-Ross metamorphic event or orogeny. The Ross Orogeny at about 500 Ma probably just led to the weak greenschist facies overprint that is evident in the rocks of the Pioneers Group. Finally, sedimentation resumed in the area of the present Shackleton Range, or at least in the eastern part of the Pioneers Escarpment, probably when detritus from erosion of the basement (Read Group and Pioneers Group) was deposited, forming sandstones and greywackes of possibly Jurassic age. There is no indication that these sediments belong to the former Turnpike Bluff Group.