986 resultados para Physico-chemistry of water
em Publishing Network for Geoscientific
Resumo:
Concentrations of major ions, silicate and nutrients (total N and P) were measured in samples of surface water from 28 lakes in ice-free areas of northern Victoria Land (East Antarctica). Sixteen lakes were sampled during austral summers 2001/02, 2003/04, 2004/05 and 2005/06 to assess temporal variation in water chemistry. Although samples showed a wide range in ion concentrations, their composition mainly reflected that of seawater. In general, as the distance from the sea increased, the input of elements from the marine environment (through aerosols and seabirds) decreased and there was an increase in nitrate and sulfate concentrations. Antarctic lakes lack outflows and during the austral summer the melting and/or ablation of ice cover, water evaporation and leaching processes in dry soils determine a progressive increase in water ion concentrations. During the five-year monitoring survey, no statistically significant variation in the water chemistry were detected, except for a slight (hardly significant) increase in TN concentrations. However, Canonical Correspondence Analysis (CCA) indicated that other factors besides distance from the sea, the presence of nesting seabirds, the sampling time and percentage of ice cover affect the composition of water in Antarctic cold desert environments.
Resumo:
Interstitial waters were squeezed from strata recovered at Sites 637-641 of ODP Leg 103 on the Galicia margin, along the northwestern Iberian continental margin in the northeast Atlantic. Chemical profiles of Site 638 show the most complexity, which appears to be related to an unconformity in the strata between Cretaceous and Neogene sediments and to rapid deposition of Cretaceous syn-rift sediments upon pre-rift strata. Analyses of waters from all of the Leg 103 sites show generally antithetical trends for calcium and magnesium; calcium increases with depth as magnesium decreases. No calcium-magnesium 'crossover' profiles are observed in these data. Data from Site 637 show an unusual pattern; calcium increases with increasing depth, but magnesium remains relatively constant. Sulfate is either stable or shows an overall decrease with depth, and boron profiles show some structure. At all but one site (Site 638), strontium profiles do not show marked depth structure. The structure of alkalinity and silica profiles is highly site dependent. Bromide profiles are, in general, constant. In nearly every case, observed bromide concentrations are near average seawater values. Relatively low concentrations of iron and manganese are common within the upper 10 m of the sediment sequence and typically are near detection limits at deeper depths
Resumo:
Recent discoveries relating to the circulation of fluids within the oceanic crust include the finding of both important fluxes of elements and isotopes into the oceans by ridge-crest hydrothermal convection and important fluxes of heat out of the oceanic crust by convection at ridge crests and at some distance from ridge crests. In the present chapter, I present isotopic, chemical, and physical data from sediments and pore waters of Deep Sea Drilling Project (DSDP) Holes 503A and 503B. These results are modeled in terms of pore-water diffusion, advection, and production to ascertain the relative contribution of these processes at this location, 7.5 m.y. removed from ridge-crest hydrothermal activity. The observations made here contribute to the understanding of chemical and heat transport in oceanic crust of moderate age.
Resumo:
Benthic fluxes and pore-water compositions of silicic acid, nitrate and phosphate were investigated for surface sediments of the abyssal Arabian Sea during four cruises (1995-1998). Five sites located in the northern (NAST), western (WAST), central (CAST), eastern (EAST), and southern (SAST) Arabian Sea were revisited during intermonsoonal periods after the NE- and SW-Monsoon. At these sites, benthic fluxes of remineralized nutrients from the sediment to the bottom water of 36-106, 102-350 and 4-16 mmol/m**2/yr were measured for nitrate, silicic acid and phosphate, respectively. The benthic fluxes and pore-water compositions showed a distinct regional pattern. Highest fluxes were observed in the western and northern region of the Arabian Sea, whereas decreasing fluxes were derived towards the southeast. At WAST, the general temporal pattern of primary production, related to the NE- and SW-Monsoon, is reflected by benthic fluxes. In contrast, at sites NAST, SAST, CAST, and EAST a temporal pattern of fluxes in response to the monsoon is not obvious. Our results reveal a clear coupling between the general regional pattern of production in surface waters and the response of the benthic environment, as indicated by the flux of remineralized nutrients, though a spatially differing degree of decoupling during transport and remineralization of particulate organic matter and biogenic opal was observed. This has to be taken into account regarding budget calculations and paleoceanographic topics.
Resumo:
Variations in the distribution of major elements and stable oxygen isotopes in ODP Leg 113 pore water are not related to lithology and thus appear to be controlled by minor constituents. Petrographic observations and geochemical considerations indicate that alteration of calc-alkalic volcanic material dispersed in the sediment is an important process. A diagenetic reaction is constructed that involves transformation of volcanic glass into smectite, zeolite (represented by phillipsite), chert, and iron sulfide. Mass balance calculations reveal that alteration of less than 10% (volume) of volcanogenic material may account for the observed depletion of magnesium, potassium, and 18O and enrichment of calcium. Alteration of this amount of volcanic glass produces less than 4% (volume) of smectite and zeolite. Hence, mass balance is obtained without having to invoke unreasonable large amounts of volcanic matter or interactions between seawater and basement.
Resumo:
This paper reviews Japanese limnological studies mainly in the McMurdo and Syowa oases, with special emphasis on the nutrient distribution. Generally, the chemical composition of the major ionic components in the coastal lakes and ponds is similar to that in seawater, while that in inland Dry Valley lakes and ponds of the McMurdo Oasis is abundant in calcium, magnesium and sulfate ions. The former can be explained by the direct influences of sea salts, while the latter is mainly attributable to the accumulation of atmospheric salts. Most saline lakes are meromictic. Dissolved oxygen concentrations in the upper layers are saturated or supersaturated, but the bottom layers are anoxic and often hydrogen sulfide occurs. The concentrations of nutrients vary largely not only among the lakes but also with depth. Silicate-Si, which is generally abundant in all freshwater and saline lakes, may be due to erosions of soils and rocks. Nitrite-N concentrations in both freshwater and saline lakes are generally low. Nitrate-N concentrations in the oxic layers of the inland saline lakes in the McMurdo Oasis arc often high, but not high in the coastal saline lakes of the Syowa and Vestfold oases. The abundance of phosphate-P and ammonium-N in the bottom stagnant layers of saline lakes can be explained by the accumulation of microbially released nutrients due to the decomposition of organic substances. Nutrients are supplied mainly from meltstreams in the catchment areas, and are proved to play an important role in primary production.
Resumo:
High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.
Resumo:
On a cruise from the eastern into western Mediterranean Sea in November/December 1978 a total of 126 samples were collected from 8 vertical profiles and 7 coastal stations for trace metal analysis. The sampling, processing and analysis was performed under strict "clean room" conditions. The concentration of the open-sea samples are close to oceanic results gathered under similar conditions. The grand averages from all profiles (± st. dev. of the individual samples) of 0.40 ± 0.16 µg/l Zn, 17.4 ± 7.4 ng/l Cd, 0.21 ± 0.07 µg/l Cu, 0.21 ± 0.13 µg/l Mn and 0.25 ± 0.09 µg/l Fe indicate that a "metal problem" does not exist in the open Mediterranean. A biologically mediated deplition in surface waters or correlation with nutrients have not been observed under the conditions established on this cruise. This is probably due top low primary production and seasonal advection processes prevailing in this sea. The data for manganese show generally higher values in the surface layer (0-75 m) than in deep waters. This could evidently proved in the nearshore profile indicating a terrigenous source for manganese.