3 resultados para Photothermal spectroscopy of liquids
em Publishing Network for Geoscientific
Resumo:
Speciation of Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd was studied in 52 samples of bottom sediments collected during Cruise 49 of the R/V "Dmitry Mendeleev" to the estuaries of the Ob and Yenisei rivers and to the southwest Kara Sea. Immediately after sampling the samples were subjected to on-board consecutive extraction to separate metal species according to their modes of occurrence in the sediments: (1) adsorbed, (2) amorphous Fe-Mn hydroxides and related metals, (3) organic + sulfide, and (4) residual, or lithogenic. Atomic absorption spectroscopy of the extracts was carried out at a stationary laboratory. Distribution of Fe, Zn, Cu, Co, Ni, Cr, Pb, and Cd species is characterized by predominance of lithogenic or geochemically inert modes (70-95% of bulk contents), in which the metals are bound in terrigenous and clastic mineral particles and organic detritus. About half of total Mn amount and 15-30% of Zn and Cu are contained in geochemically mobile modes. Spatiotemporal variations in proportions of the metal species in the surface layer of sediments along sub-meridional sections and through vertical sections of bottom sediment cores testify that Mn and, to a lesser extent, Cu are the most sensitive to changes in sedimentation environment. The role of their geochemically mobile species notably increases under reducing conditions.
Resumo:
Group composition of organic matter in recent ocean sediments with high Corg content has been studied in detail. It has been shown that organic matter in sediments with Corg content greater than 4% is present in the very earliest stages of transformation. Group composition of amino acids is practically similar to that of their main producer, namely phytoplankton. Organic matter of sediments with Corg content below 4% is, from this standpoint, more transformed and is close to organic matter in usual type sediments with similar Corg content.
Resumo:
We provide the first direct evidence that a number of water-soluble compounds, in particular calcium sulfate (CaSO4 2H2O) and calcium carbonate (CaCO3), are present as solid, micron-sized inclusions within the Greenland GRIP ice core. The compounds are detected by two independent methods: micro-Raman spectroscopy of a solid ice sample, and energy-dispersive X-ray spectroscopy of individual inclusions remaining after sublimation. CaSO4 2H2O is found in abundance throughout the Holocene and the last glacial period, while CaCO3 exists mainly in the glacial period ice. We also present size and spatial distributions of the micro-inclusions. These results suggest that water-soluble aerosols in the GRIP ice core are dependable proxies for past atmospheric conditions.