14 resultados para Photosynthetic nitrogen-use efficiency
em Publishing Network for Geoscientific
Resumo:
There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 latm) and light conditions (constant and dynamic), the latter yielding the same integrated irradiance over the day. To characterize interactive effects between treatments, growth, elemental composition, primary production and photophysiology were investigated. Dynamic light reduced growth and strongly altered the effects of OA on primary production, being unaffected by elevated pCO2 under constant light, yet significantly reduced under dynamic light. Interactive effects between OA and light were also observed for Chl production and particulate organic carbon (POC) quotas. Response patterns can be explained by changes in the cellular energetic balance. While the energy transfer efficiency from photochemistry to biomass production (Phi_e,C) was not affected by OA under constant light, it was drastically reduced under dynamic light. Contrasting responses under different light conditions need to be considered when making predictions regarding a more stratified and acidified future ocean.
Resumo:
A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B(12) and carbon dioxide partial pressure (pCO(2)) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B(12)-replete conditions, cells grown at high pCO(2) had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO(2). At high pCO(2), B(12)-limited cells had ~50% lower specific growth and carbon fixation rates, and used Fe ~15-fold less efficiently, and Zn and Cd ~3-fold less efficiently, in comparison with B(12)-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO(2)/B(12)-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B(12)-replete cells were 5- to 14-fold higher in comparison with B(12)-limited cells, suggesting that >80% of cellular Co of B(12)-limited cells was likely from B(12). Our results demonstrate that CO(2) and vitamin B(12) interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.
Resumo:
Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (Fv/Fm), maximum relative electron transport rate (rETRmax), photosynthetic efficiency (alpha), and the photoadaptive index (Ek). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0-5 cm from ice-water interface) expressed low Fv/Fm (0.331-0.426) and low alpha (0.098-0.130 /(µmol photons/m**2/s)) in December. Fv/Fm and alpha increased in March and May (0.468-0.588 and 0.141-0.438 /(µmol photons/m**2/s), respectively) indicating increased photosynthetic activity. In addition, increases in rETRmax (3.3-16.4 a.u.) and Ek (20-88 µmol photons/m**2/s) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion, photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).
Resumo:
Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (a) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed.
Resumo:
The present dataset is part of an interdisciplinary project carried out on board the RV Southern Surveyor off New South Wales (Australia) from the 15th to the 31st October 2010. The main objective of the research voyage was to evaluate how the East Australian Current (EAC) affects the optical, chemical, physical, and biological water properties of the continental shelf and slope off the NSW coast.
Resumo:
Under ocean acidification (OA), the 200 % increase in CO2(aq) and the reduction of pH by 0.3-0.4 units are predicted to affect the carbon physiology and growth of macroalgae. Here we examined how the physiology of the giant kelp Macrocystis pyrifera is affected by elevated pCO2/low pH. Growth and photosynthetic rates, external and internal carbonic anhydrase (CA) activity, HCO3 (-) versus CO2 use were determined over a 7-day incubation at ambient pCO2 400 µatm/pH 8.00 and a future OA treatment of pCO2 1200 µatm/pH 7.59. Neither the photosynthetic nor growth rates were changed by elevated CO2 supply in the OA treatment. These results were explained by the greater use of HCO3 (-) compared to CO2 as an inorganic carbon (Ci) source to support photosynthesis. Macrocystis is a mixed HCO3 (-) and CO2 user that exhibits two effective mechanisms for HCO3 (-) utilization; as predicted for species that possess carbon-concentrating mechanisms (CCMs), photosynthesis was not substantially affected by elevated pCO2. The internal CA activity was also unaffected by OA, and it remained high and active throughout the experiment; this suggests that HCO3 (-) uptake via an anion exchange protein was not affected by OA. Our results suggest that photosynthetic Ci uptake and growth of Macrocystis will not be affected by elevated pCO2/low pH predicted for the future, but the combined effects with other environmental factors like temperature and nutrient availability could change the physiological response of Macrocystis to OA. Therefore, further studies will be important to elucidate how this species might respond to the global environmental change predicted for the ocean.
Resumo:
In addition to enhance agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically altered global nutrient budget, water quality, greenhouse gas balance, and their feedbacks to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system/land surface modeling studies have to ignore or use over-simplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long period. We therefore develop a global time-series gridded data of annual synthetic N and P fertilizer use rate in croplands, matched with HYDE 3,2 historical land use maps, at a resolution of 0.5º latitude by longitude during 1900-2013. Our data indicate N and P fertilizer use rates increased by approximately 8 times and 3 times, respectively, since the year 1961, when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) survey of country-level fertilizer input were available. Considering cropland expansion, increase of total fertilizer consumption amount is even larger. Hotspots of agricultural N fertilizer use shifted from the U.S. and Western Europe in the 1960s to East Asia in the early 21st century. P fertilizer input show the similar pattern with additional hotspot in Brazil. We find a global increase of fertilizer N/P ratio by 0.8 g N/g P per decade (p< 0.05) during 1961-2013, which may have important global implication of human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global assessment on agricultural productivity, crop yield, agriculture-derived greenhouse gas balance, global nutrient budget, land-to-aquatic nutrient loss, and ecosystem feedback to the climate system.
Resumo:
Dissolution of anthropogenic CO(2) increases the partial pressure of CO(2) (pCO(2)) and decreases the pH of seawater. The rate of Fe uptake by the dominant N(2)-fixing cyanobacterium Trichodesmium declines as pH decreases in metal-buffered medium. The slower Fe-uptake rate at low pH results from changes in Fe chemistry and not from a physiological response of the organism. Contrary to previous observations in nutrient-replete media, increasing pCO(2)/decreasing pH causes a decrease in the rates of N(2) fixation and growth in Trichodesmium under low-Fe conditions. This result was obtained even though the bioavailability of Fe was maintained at a constant level by increasing the total Fe concentration at low pH. Short-term experiments in which pCO(2) and pH were varied independently showed that the decrease in N(2) fixation is caused by decreasing pH rather than by increasing pCO(2) and corresponds to a lower efficiency of the nitrogenase enzyme. To compensate partially for the loss of N(2) fixation efficiency at low pH, Trichodesmium synthesizes additional nitrogenase. This increase comes partly at the cost of down-regulation of Fe-containing photosynthetic proteins. Our results show that although increasing pCO(2) often is beneficial to photosynthetic marine organisms, the concurrent decreasing pH can affect primary producers negatively. Such negative effects can occur both through chemical mechanisms, such as the bioavailability of key nutrients like Fe, and through biological mechanisms, as shown by the decrease in N(2) fixation in Fe-limited Trichodesmium.
Resumo:
Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 µatm) and high CO2 (1000 µatm) conditions at limiting (10 µmol/L) or enriched (110 µmol/L) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.