15 resultados para Phanerozoic
em Publishing Network for Geoscientific
Resumo:
Phanerozoic granitoids are widespread in the Korean Peninsula and form a part of the East Asian Cordilleran-type granitoid belt extending from southeastern China to Far East Russia. Here we present SHRIMP zircon U-Pb ages and geochemical and Nd isotopic compositions of Late Paleozoic to Early Jurassic granitoid plutons in the northern Gyeongsang basin, southeastern Korea; namely the Jangsari, Yeongdeok, Yeonghae, and Satkatbong plutons. The granite and associated gabbroic rocks from the Jangsari pluton were coeval and respectively dated at 257.3 ± 2.0 Ma and 255.7 ± 1.4 Ma. This result represents the first finding of a Late Paleozoic pluton in South Korea. Three granite samples from the Yeongdeok pluton yielded a slightly younger age span ranging from 252.9 ± 2.5 Ma to 246.7 ± 2.1 Ma. Two diorite samples from the Yeonghae pluton gave much younger ages of 195.1 ± 1.9 Ma and 196.3 ± 1.6 Ma. An Early Jurassic age of 192.4 ± 1.6 Ma was also obtained from a diorite sample from the Satkatbong pluton. The mineral assemblage and Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) relationship indicate that all the analyzed plutons are subduction zone granitoids. Enrichments in large-ion-lithophile-elements and depletions in high-field-strength-elements of these plutons are also concordant with geochemical characteristics typical for the subduction zone magma. The presence of Late Permian to Early Triassic arc system is in contrast with the conventional idea that the arc magmatism along the continental margin of the Korean Peninsula has commenced from Early Jurassic after the termination of Triassic collisional orogenesis. The epsilon-Nd(t) values of the granitoid plutons are consistently positive (2.4-4.6), suggesting that crustal residence time of the basement beneath the Gyeongsang basin is relatively short. Moreover, the reevaluation of previously-published data reveals that geochemical compositions of the Yeongdeok pluton are compatible with those of high-silica adakites; La/Yb = 37.5-114.6, Sr/Y = 138.2-214.0, SiO2 = 62.9-72.0 wt. %, Al2O3 = 15.5-17.0 wt. %, Sr = 562-1173 ppm, MgO = 0.4-1.6 wt. %, Y = 3-6 ppm, Yb = 0.18-0.45 ppm, and Eu/Eu* = 0.92-1.31. The occurrence of adakites in southeastern Korea, and presumably in the Hida belt of central-western Japan, is indicative of a hot subduction regime developing at least partly along the East Asian continental margin during the Permian-Triassic transition period.
Resumo:
The Turonian (93.5 to 89.3 million years ago) was one of the warmest periods of the Phanerozoic eon, with tropical sea surface temperatures over 35°C. High-amplitude sea-level changes and positive d18O excursions in marine limestones suggest that glaciation events may have punctuated this episode of extreme warmth. New d18O data from the tropical Atlantic show synchronous shifts ~91.2 million years ago for both the surface and deep ocean that are consistent with an approximately 200,000-year period of glaciation, with ice sheets of about half the size of the modern Antarctic ice cap. Even the prevailing supergreenhouse climate was not a barrier to the formation of large ice sheets, calling into question the common assumption that the poles were always ice-free during past periods of intense global warming.
Resumo:
We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87Sr/86Sr that had been given in summary form by W.H. Burke co-workers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87Sr/86Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. These samples are characterized by a wide variety of diagenetic and burial histories. The large size and cosmopolitan nature of the data set decreases the likelihood that, among coeval data, systematic error has been introduced by a similar pattern of diagenetic alteration of the ratios. There is good clustering of data points throughout the Cenozoic and Cretaceous curve. The consistency of data is illustrated by Cenozoic and Cretaceous data plots that include a separate symbol for each DSDP site and non-DSDP sample location. More than 98% of the data points are enclosed by upper and lower lines that define a narrow band. For any given time, the correct seawater ratio probably lies within this band. A line drawn within the band represents our estimate of the actual seawater ratio as a function of time. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87Sr/86Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleooceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87Sr/86Sr can complicate a direct platetectonic interpretation for portions of the seawater curve.
Resumo:
We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB.
Resumo:
Paleosols crop out in the Sukhona River valley as several members up to 10 m thick embedded into the Salarevo Formation sediments. Principal characteristics of the paleosols include a dense network of root channels, indications of eluvial gley alteration, redistribution and formation of secondary carbonates represented by several generations, and formation of block-prismatic soil structure with specific clayey films at structural jointing faces. The paleosols are divided into a number of genetically interrelated horizons (from top to bottom): presumably organogenic accumulation (AElg), eluvial gley horizon (Elg), illuvial horizons (B1 and B2), illuvial gley horizon (Bg), and transitional horizons (ElBg and BElg). The paleosols formed under conditions of a semiarid climate with sharp seasonal or secular and multisecular oscillations of atmospheric precipitation. Such soils point to specific ecological environments existed in the northern semiarid belt of the Earth before the greatest (in Phanerozoic) biospheric crisis at the Permian-Triassic boundary.
Resumo:
Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.
Resumo:
Stable oxygen and carbon isotope measurements on biogenic calcite and aragonite have become standard tools for reconstructing past oceanographic and climatic change. In aquatic organisms, 18O/16O ratios in the shell carbonate are a function of the ratio in the sea water and the calcification temperature (Epstein et al., 1953). In contrast, 13C/12C ratios are controlled by the ratio of dissolved inorganic carbon in sea water and physiological processes such as respiration and symbiont photosynthesis (Spero et al., 1991, doi:10.1029/91PA02022). These geochemical proxies have been used with analyses of foraminifera shells to reconstruct global ice volumes (Shackleton and Opdyke, 1973, doi:10.1016/0033-5894(73)90052-5), surface and deep ocean temperatures (Broecker, 1986, doi:10.1016/0033-5894(86)90087-6; Labeyrie et al., 1987, doi:10.1038/327477a0), ocean circulation changes (Duplessy et al., 1988, doi:10.1029/PA003i003p00343) and glacial-interglacial exchange between the terrestrial and oceanic carbon pools (Sackleton, 1977). Here, we report experimental measurements on living symbiotic and non-symbiotic plankton foraminifera (Orbulina universa and Globigerina bulloides respectively) showing that the 13C/12C and 18O/16O ratios of the calcite shells decrease with increasing seawater [CO3 2-]. Because glacial-period oceans had higher pH and [CO3 2-] than today (Sanyal et al., 1995, doi:10.1038/373234a0), these new relationships confound the standard interpretation of glacial foraminiferal stable-isotope data. In particular, the hypothesis that the glacial-interglacial shift in the 13C/12C ratio was due to a transfer of terrestrial carbon into the ocean(Shackleton ,1977) can be explained alternatively by an increase in ocean alkalinity (Lea et al., 1996). A carbonate-concentration effect could also help explain some of the extreme stable-isotope variations during the Proterozoic and Phanerozoic aeons (Kaufman et al., 1993, doi:10.1016/0012-821X(93)90254-7).
Resumo:
The middle Miocene Climatic Optimum (17-15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal d11B record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that the evolution of global climate during the middle Miocene (as reflected by changes in the cyrosphere) was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution (~1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle Miocene, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350-400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200-260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle Miocene or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle Miocene, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle Miocene probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere.
Resumo:
Variations in the 18O/16O ratios of marine fossils and microfossils record changes in seawater 18O/16O and temperature and form the basis for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope curves for Phanerozoic foraminifera, mollusks, brachiopods, and conodonts, and for Precambrian limestones, dolostones, and cherts. Periodic oxygen-isotopic variations in deep-sea foraminifera define marine isotope stages that, when combined with biostratigraphy and astronomical tuning, provide a late Cenozoic chronostratigraphy with a resolution of several thousand years. Oxygen isotope events of early Cenozoic, Mesozoic, and Paleozoic age serve as chemostratigraphic markers for regional and global correlation. Precambrian oxygen isotope stratigraphy, however, is hampered by the lack of unaltered authigenic marine sediments.
Resumo:
The complex interplay between extraterrestrial events and earth-bound processes that triggered one of the greatest biological crises of the Phanerozoic requires a high resolution timescale. Detailed magnetic susceptibility measurements at the Contessa Highway and Bottaccione sections (Italy) span the Cretaceous-Paleogene boundary and reveal clear orbital signatures in the sedimentary record. Identification of precession and 405 kyr eccentricity cycles allows an estimate of 324+/-40 kyr for the duration of the Maastrichtian part of Chron C29r. We present in the same high resolution time frame sites in Spain and the North and South Atlantic and bio-horizons, biotic changes, stable isotopic excursions and the decrease in Osmium isotopes recorded in these sections. The onset of 187 Os/ 188 Os decrease coincides with the d13 C negative excursion K-PgE1, thus suggesting a first pulse in Deccan volcanism at 66.64 Ma. The K-PgE3 d13 C negative excursion is possibly the expression of a second pulse at 66.26 Ma. Late Maastrichtian d13 C negative excursions are of low intensity and span durations of one to two eccentricity cycles, whereas early Danian excursions are brief (about 30 kyr) and acute. In Biotic response to late Maastrichtian perturbations occurred with a delay of ca. 200 kyr after the beginning of K-PgE1 shortly before K-PgE3. The biotic perturbation could be thus either a delayed response to K-PgE1, or a direct response to K-PgE3, and possibly, a threshold response to the stepwise buildup of CO2 atmospheric injections. No delay is evident in response to early Danian hyperthermal events. These differences suggest that short-lived, volcanically-derived environmental perturbations were buffered within the stable late Maastrichtian oceanic realm whereas they were amplified by the more sensitive and highly disturbed early Danian oceanic ecosystem.
Resumo:
he early late Cretaceous (Cenomanian-early Turonian) is thought to have been one of the warmest periods of the Phanerozoic. This period was characterised by tropical sea surface temperatures of up to 36 °C and a pole-to-equator-gradient of less than 10 °C. The subsequent Turonian-Maastrichtian was characterised by a continuous climatic cooling, peaking in the Maastrichtian. This climatic cooling and the resulting palaeoceanographic changes had an impact on planktic primary producer communities including calcareous nannofossils. In order to gain a better understanding of these Cenomanian-Maastrichtian palaeoceanographic changes, calcareous nannofossils have been studied from the proto North Atlantic (Goban Spur, DSDP Sites 549, 551). In order to see potential differences between open oceanic and shelf dwelling nannofossils, the data from Goban Spur have been compared to findings from the European shelf (northern Germany). A total of 77 samples from Goban Spur were studied for calcareous nannofossils revealing abundant (mean 6.2 billion specimens/g sediment) and highly diverse (mean 63 species/sample) nannofossil assemblages. The dominant taxa are Watznaueria spp. (mean 30.7%), Prediscosphaera spp. (mean 18.3%), Zeugrhabdotus spp. (mean 8.3%), Retecapsa spp. (mean 7.2%) and Biscutum spp. (mean 6.6%). The Cenomanian assemblages of both Goban Spur (open ocean) and Wunstorf (shelf) are characterised by elevated abundances of high fertility taxa like Biscutum spp., Zeugrhabdotus spp. and Tranolithus orionatus. Early Turonian to Maastrichtian calcareous nannofossil assemblages of Goban Spur are, however, quite different to those described from European sections. Oceanic taxa like Watznaueria spp., Retecapsa spp. and Cribrosphearella ehrenbergii dominate in Goban Spur whereas the fertility indicators Biscutum spp. and T. orionatus are more abundant in the European shelf assemblages. This shift from a homogeneous distribution of calcareous nannofossils in the Cenomanian towards a heterogeneous one in the Turonian-Maastrichtian implies a change of the ocean circulation. The "eddy ocean" system of the Cenomanian was replaced by an oceanic circulation similar to the modern one in the Turonian-Maastrichtian, caused by the cooling. The increased pole-to-equator-gradients resulted in an oceanic circulation similar to the modern one.
Resumo:
The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta 18Oe, delta 18ODIC) and carbon (The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta18Oe, delta18ODIC) and carbon (delta13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (Delta delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.
Resumo:
Organic carbon-rich shales from localities in England, Italy, and Morocco, which formed during the Cenomanian-Turonian oceanic anoxic event (OAE), have been examined for their total organic carbon (TOC) values together with their carbon, nitrogen, and iron isotope ratios. Carbon isotope stratigraphy (d13Corg and d13Ccarb) allows accurate recognition of the strata that record the oceanic anoxic event, in some cases allowing characterization of isotopic species before, during, and after the OAE. Within the black shales formed during the OAE, relatively heavy nitrogen isotope ratios, which correlate positively with TOC, suggest nitrate reduction (leading ultimately to denitrification and/or anaerobic ammonium oxidation). Black shales deposited before the onset of the OAE in Italy have unusually low bulk d57Fe values, unlike those found in the black shale (Livello Bonarelli) deposited during the oceanic anoxic event itself: These latter conform to the Phanerozoic norm for organic-rich sediments. Pyrite formation in the pre-OAE black shales has apparently taken place via dissimilatory iron reduction (DIR), within the sediment, a suboxic process that causes an approximately -2 per mil fractionation between a lithogenic Fe(III)oxide source and Fe(II)aq. In contrast, bacterial sulfate reduction (BSR), at least partly in the water column, characterized the OAE itself and was accompanied by only minor iron isotope fractionation. This change in the manner of pyrite formation is reflected in a decrease in the average pyrite framboid diameter from ~10 to ~7 µm. The gradual, albeit irregular increase in Fe isotope values during the OAE, as recorded in the Italian section, is taken to demonstrate limited isotopic evolution of the dissolved iron pool, consequent upon ongoing water column precipitation of pyrite under euxinic conditions. Given that evidence exists for both nitrate and sulfate reduction during the OAE, it is evident that redox conditions in the water column were highly variable, in both time and space.