37 resultados para Persistence of ground cover
em Publishing Network for Geoscientific
Resumo:
The importance of renewable energies for the European electricity market is growing rapidly. This presents transmission grids and the power market in general with new challenges which stem from the higher spatiotemporal variability of power generation. This uncertainty is due to the fact that renewable power production results from weather phenomena, thus making it difficult to plan and control. We present a sensitivity study of a total solar eclipse in central Europe in March. The weather in Germany and Europe was modeled using the German Weather Service's local area models COSMO-DE and COSMO-EU, respectively (http://www.cosmo-model.org/). The simulations were performed with and without considering a solar eclipse for the following 3 situations: 1. An idealized, clear-sky situation for the entire model area (Europe, COSMO-EU) 2. A real weather situation with mostly cloudy skies (Germany, COSMO-DE) 3. A real weather situation with mostly clear skies (Germany, COSMO-DE) The data should help to evaluate the effects of a total solar eclipse on the weather in the planetary boundary layer. The results show that a total solar eclipse has significant effects particularly on the main variables for renewable energy production, such as solar irradiation and temperature near the ground.
Resumo:
The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.
Resumo:
In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz.
Resumo:
Thermokarst lakes are thought to have been an important source of methane (CH4) during the last deglaciation when atmospheric CH4 concentrations increased rapidly. Here we demonstrate that meltwater from permafrost ice serves as an H source to CH4 production in thermokarst lakes, allowing for region-specific reconstructions of dD-CH4 emissions from Siberian and North American lakes. dD CH4 reflects regionally varying dD values of precipitation incorporated into ground ice at the time of its formation. Late Pleistocene-aged permafrost ground ice was the dominant H source to CH4 production in primary thermokarst lakes, whereas Holocene-aged permafrost ground ice contributed H to CH4 production in later generation lakes. We found that Alaskan thermokarst lake dD-CH4 was higher (-334 ± 17 per mil) than Siberian lake dD-CH4 (-381 ± 18 per mil). Weighted mean dD CH4 values for Beringian lakes ranged from -385 per mil to -382 per mil over the deglacial period. Bottom-up estimates suggest that Beringian thermokarst lakes contributed 15 ± 4 Tg CH4 /yr to the atmosphere during the Younger Dryas and 25 ± 5 Tg CH4 /yr during the Preboreal period. These estimates are supported by independent, top-down isotope mass balance calculations based on ice core dD-CH4 and d13C-CH4 records. Both approaches suggest that thermokarst lakes and boreal wetlands together were important sources of deglacial CH4.
Resumo:
The role of Pre- and Protohistoric anthropogenic land cover changes needs to be quantified i) to establish a baseline for comparison with current human impact on the environment and ii) to separate it from naturally occurring changes in our environment. Results are presented from the simple, adaptation-driven, spatially explicit Global Land Use and technological Evolution Simulator (GLUES) for pre-Bronze age demographic, technological and economic change. Using scaling parameters from the History Database of the Global Environment as well as GLUES-simulated population density and subsistence style, the land requirement for growing crops is estimated. The intrusion of cropland into potentially forested areas is translated into carbon loss due to deforestation with the dynamic global vegetation model VECODE. The land demand in important Prehistoric growth areas - converted from mostly forested areas - led to large-scale regional (country size) deforestation of up to 11% of the potential forest. In total, 29 Gt carbon were lost from global forests between 10 000 BC and 2000 BC and were replaced by crops; this value is consistent with other estimates of Prehistoric deforestation. The generation of realistic (agri-)cultural development trajectories at a regional resolution is a major strength of GLUES. Most of the pre-Bronze age deforestation is simulated in a broad farming belt from Central Europe via India to China. Regional carbon loss is, e.g., 5 Gt in Europe and the Mediterranean, 6 Gt on the Indian subcontinent, 18 Gt in East and Southeast Asia, or 2.3 Gt in subsaharan Africa.
Resumo:
Underwater photo-transect surveys were conducted on September 23-27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. This survey was done by swimming along pre-defined transect sites and taking a picture of the bottom substrate parallel to the bottom at constant vertical distance (30cm) every two to three metres. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of transect surveys. Approximation of the coordinates for each benthic photo was based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software. Coordinates of each photo were interpolated by finding the the gps coordinates that were logged at a set time before and after the photo was captured. The output of this process was an ArcMap point shapefile, a Google Earth KML file and a thumbnail of each benthic photo taken. The data in the ArcMap shapefile and in the Google Earth KML file consisted of the approximated coordinate of each benthic photo taken during the survey. Using the GPS Photo Link extension within the ArcMap environment, opening the ArcMap shapefile will enable thumbnail to be displayed on the associated benthic cover photo whenever hovering with the mouse over a point on the transect. By downloading the GPSPhotoLink software from the www.geospatialexperts.com, and installing it as a trial version the ArcMap exstension will be installed in the ArcMap environment.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
This collection contains measurements of vegetation and soil surface cover measured on the plots of the different sub-experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. The following series of datasets are contained in this collection: 1. Measurements of vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the species that have been sown into the plots to create the gradient of plant diversity.