8 resultados para Pentachlorophenol
em Publishing Network for Geoscientific
Resumo:
Lysosomal membrane stability, lipofuscin (LF), malondialdehyde (MDA), neutral lipid (NL) levels, as well as halogenated organic compounds (HOCs), Cr, Cd, Pb and Fe concentrations were analyzed in liver of black-legged kittiwake (BK), herring gull (HG), and northern fulmar (NF) chicks. There were significant species differences in the levels of NL, LF and lysosomal membrane stability. These parameters were not associated with the respective HOC concentrations. LF accumulation was associated with increasing Cr, Cd and Pb concentrations. HG presented the lowest lysosomal membrane stability and the highest. LF and NL levels, which indicated impaired lysosomes in HG compared to NF and BK. Lipid peroxidation was associated with HOC and Fe2+ levels. Specific HOCs showed positive and significant correlations with MDA levels in HG. The study indicates that contaminant exposure can affect lysosomal and lipid associated parameters in seabird chicks even at low exposure levels. These parameters may be suitable markers of contaminant induced stress in arctic seabirds.
Resumo:
The tissue-specific composition of sum classes of brominated and chlorinated contaminants and metabolic/degradation byproducts was determined in adult male and female polar bears from East Greenland. Significantly (p < 0.05) higher concentrations of SUM-PCBs, various other organochlorines such as SUM-CHL, p,p'-DDE, SUM-CBz, SUM-HCHs, octachlorostyrene (OCS),SUM-mirex, dieldrin, the flame retardants SUM-PBDEs, and total-(R)-hexabromocyclododecane (HBCD), SUM-methylsulfonyl (MeSO2)-PCBs and 3-MeSO2-p,p'-DDE, were found in the adipose and liver tissues relative to whole blood and brain. In contrast, SUM-hydroxyl (OH)-PCB, 4-OH-heptachlorostyrene and SUM-OH-PBDE concentrations were significantly highest (p < 0.05) in whole blood, whereas the highest concentrations of SUM-OH-PBBs were found in the adipose tissue. Based on the total concentrations of all organohalogens in all three tissues and blood, the combined body burden was estimated to be 1.34 ± 0.12 g, where >91% of this amount was accounted for by the adipose tissue alone, followed by the liver, whole blood, and brain. These results show that factors such as protein association and lipid solubility appear to be differentially influencing the toxicokinetics, in terms of tissue composition/localization and burden, of organohalogen classes with respect to chemical structure and properties such as the type of halogenation (e.g., chlorination or bromination), and the presence or absence of additional phenyl group substituents (e.g., MeO and OH groups). The tissue- and blood-specific accumulation (or retention) among organohalogen classes indicates that exposure and any potential contaminant-mediated effects in these polar bears are likely tissue or blood specific.
Resumo:
Persistent chemicals accumulate in the arctic environment due to their chemical reactivity and physicochemical properties and polychlorinated biphenyls (PCBs) are the most concentrated pollutant class in polar bears (Ursus maritimus). Metabolism of PCB and polybrominated biphenyl ether (PBDE) flame-retardants alter their toxicological properties and these metabolites are known to interfere with the binding of thyroid hormone (TH) to transthyretin (TTR) in rodents and humans. In polar bear plasma samples no binding of [125I]-T4 to TTR was observed after incubation and PAGE separation. Incubation of the plasma samples with [14C]-4-OH-CB107, a compound with a higher binding affinity to TTR than the endogenous ligand T4 resulted in competitive binding as proven by the appearance of a radio labeled TTR peak in the gel. Plasma incubation with T4 up to 1 mM, a concentration that is not physiologically relevant anymore did not result in any visible competition. These results give evidence that the binding sites on TTR for T4 in wild living polar bears are completely saturated. Such saturation of binding sites can explain observed lowered levels of THs and could lead to contaminant transport into the developing fetus.
Resumo:
We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO2-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SumPCBs, p,p'-DDE, SumCHLs, SumMeSO2-PCBs, 3-MeSO2-p,p'-DDE, PCP, SumPBDEs, total-(alpha)-HBCD, SumOH-PBDEs, SumMeO-PBDEs and SumOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were <= 1 in the brain, with the exception of SumOH-PBBs (mean BMF = 93±54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.
Resumo:
Thyroid hormones are essential for normal growth and development and disruption of thyroid homeostasis can be critical to young developing individuals. The aim of the present study was to assess plasma concentrations of halogenated organic contaminants (HOCs) in chicks of two seabird species and to investigate possible correlations of HOCs with circulating thyroid hormone (TH) concentrations. Plasma from black-legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glacialis) chicks were sampled in Kongsfjorden, Svalbard in 2006. The samples were analyzed for thyroid hormones and a wide range of HOCs (polychlorinated biphenyls (PCBs), hydroxylated (OH-) and methylsulphoned (MeSO-) PCB metabolites, organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and perfluorinated compounds (PFCs)). Concentrations of HOCs were generally low in kittiwake and fulmar chicks compared to previous reports. HOC concentrations were five times higher in fulmar chicks compared to in kittiwake chicks. PFCs dominated the summed HOCs concentrations in both species (77% in kittiwakes and 69% in fulmars). Positive associations between total thyroxin (TT4) and PFCs (PFHpS, PFOS, PFNA) were found in both species. Although correlations do not implicate causal relationships per se, the correlations are of concern as disruption of TH homeostasis may cause developmental effects in young birds.
Resumo:
The present study investigates the concentrations and patterns of organochlorine pesticides (OCPs) and their metabolites in liver and plasma of two ringed seal populations (Phoca hispida): lower contaminated Svalbard population and more contaminated Baltic Sea population. Among OCPs, p,p'-DDE and sum-chlordanes were the highest in concentration. With increasing hepatic contaminant concentrations and activities of xenobiotic-metabolizing enzymes, the concentrations of 3-methylsulfonyl-p,p'-DDE and the concentration ratios of pentachlorophenol/hexachlorobenzene increased, and the toxaphene pattern shifted more towards persistent Parlar-26 and -50 and less towards more biodegradable Parlar-44. Relative concentrations of the chlordane metabolites, oxychlordane and -heptachlorepoxide, to sum-chlordanes were higher in the seals from Svalbard compared to the seals from the Baltic, while the trend was opposite for cis- and trans-nonachlor. The observed differences in the OCP patterns in the seals from the two populations are probably related to the catalytic activity of xenobiotic-metabolizing enzymes, and also to differences in dietary exposure.