4 resultados para Partial differential equation
em Publishing Network for Geoscientific
Resumo:
Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems.
Resumo:
Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.
Resumo:
Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO2 on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1-0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO2 levels for at least 7 days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K+ and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO2 exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na+/K+-ATPase) were affected predominantly in the non-osmoregulating anterior gills.
Resumo:
The tolerance and physiological responses of the larvae of two congeneric gastropods, the intertidal Nassarius festivus and subtidal Nassarius conoidalis, to the combined effects of ocean acidification (PCO2 at 380, 950, 1250 ppm), temperature (15, 30 degrees C) and salinity (10, 30 psu) were compared. Results of three-way ANOVA on cumulative mortality after 72-h exposure showed significant interactive effects in which mortality increased with pCO(2) and temperature, but reduced at higher salinity for both species, with higher mortality being obtained for N. conoidalis. Similarly, respiration rate of the larvae increased with temperature and pCO(2) level for both species, with a larger percentage increase for N. conoidalis. Larval swimming speed increased with temperature and salinity for both species whereas higher pCO(2) reduced swimming speed in N. conoidalis but not N. festivus. The present findings indicated that subtidal congeneric species are more sensitive than their intertidal counterparts to the combined effects of these stressors. (c) 2014 Elsevier Ltd. All rights reserved.