9 resultados para Parks--Canada--Administration|vCase studies.

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100-595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March-June 2008) to open-water conditions in summer (June-August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 µm) varied significantly among sites (1.2-6.4 g C/m**2 in spring, 1.1-12.6 g C/m**2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9-33.2 mg C/m**2/day in spring, 11.6-44.4 mg C/m**2/day in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess geographic distributions of elements in the Arctic we compared essential and non-essential elements in the livers of polar bears (Ursus maritimus) collected from five regions within Canada in 2002, in Alaska between 1994 and 1999 and from the northwest and east coasts of Greenland between 1988 and 2000. As, Hg, Pb and Se varied with age, and Co and Zn with gender, which limited spatial comparisons across all populations to Cd, which was highest in Greenland bears. Collectively, geographic relationships appeared similar to past studies with little change in concentration over time in Canada and Greenland for most elements; Hg and Se were higher in some Canadian populations in 2002 as compared to 1982 and 1984. Concentrations of most elements in the polar bears did not exceed toxicity thresholds, although Cd and Hg exceeded levels correlated with the formation of hepatic lesions in laboratory animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate (N=24-65 per station) 0.25 m**2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind/l (median 0.8 ind/l). In level ice, low ice algal pigment concentrations (<0.1-15.8 µg Chl a /l), low brine salinities (1.8-21.7) and flushing from the melting sea ice likely explain the low ice meiofauna concentrations. Higher abundances of Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind/l, median 40 ind/l), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind/m**2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of enhanced summer ice melt. Previous estimates of Arctic sea ice meiofauna and under-ice amphipods on regional and pan-Arctic scales likely underestimate abundances at least in summer because they typically do not include pressure ridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twelve year datasets of weekly atmospheric concentrations of alpha- and gamma-HCH were compared between the two Arctic monitoring stations of Alert, Nunavut, Canada, and Zeppelin Mountain, Svalbard, Norway. Time-series analysis was conducted with the use of dynamic harmonic regression (DHR), which provided a very good model fit, to examine both the seasonal behaviour in these isomers and the longer-term, underlying trends. Strong spatial differences were not apparent between the two sites, although subtle differences in seasonal behaviour and composition were identified. For example, the composition of gamma-HCH to total HCH (alpha + gamma) was greater at Zeppelin compared to Alert, probably reflecting this site's proximity to major use regions of lindane. Pronounced seasonality in air concentrations for gamma-HCH was marked by a 'spring maximum event' (SME), confirming earlier studies. For alpha-HCH, the SME was much weaker and only evident at Alert, whereas at Zeppelin, seasonal fluctuations for alpha-HCH were marked by elevated concentrations in summer and lower concentrations during winter, with this pattern most apparent for the years after 2000. We attribute this difference in spatial and temporal patterns to the Arctic oscillation. A similar climatic pattern was not evident at either site in the gamma-HCH data. Seasonally adjusted, long-term trends revealed declining concentrations at both sites for alpha- and gamma-HCH over the entire time-series. Recent legislation affecting lindane use appear to account for this decline in gamma-HCH, with little evidence of a delay or 'lag' between the banning of lindane in Europe (a main source region) or Canada, and a decline in air concentrations observed at both Arctic sites.