4 resultados para Parana Plateau Brazil
em Publishing Network for Geoscientific
Resumo:
Ferromanganese deposits, mostly manganese crusts, are common in elevations along the northeastern Brazilian continental margin. Association of the deposits with more or less altered basaltic rock can be observed. On the Pernambuco Plateau and Ceara Guyot, ferromanganese deposits occur associated with phosphatic material and nodules. The mineralogical composition of the ferromanganese deposits indicates a predominance of the manganese oxide phase dMnO2. Low contents of Mn and Cu are characteristic of their chemical composition. Fe and Mn in the deposits probably precipitated from the sea water.
Resumo:
Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).
Resumo:
X-ray computed tomography (CT) provides an insight into the progression of dissolution in the tests of planktonic foraminifera. Four species of foraminifera (G. ruber [white], G. sacculifer, N. dutertrei and P. obliquiloculata) from Pacific, Atlantic and Indian Ocean core-top samples were examined by CT and SEM. Inner chamber walls began to dissolve at Delta[CO3**2-] values of 12-14 µmol/kg. Close to the calcite saturation horizon, dissolution and precipitation of calcite may occur simultaneously. Inner calcite of G. sacculifer, N. dutertrei and P. obliquiloculata from such sites appeared altered or replaced, whereas outer crust calcite was dense with no pores. Unlike the other species, there was no distinction between inner and outer calcite in CT scans of G. ruber. Empty calcite crusts of N. dutertrei and P. obliquiloculata were most resistant to dissolution and were present in samples where Delta[CO3**2-] ~ -20 µmol/kg. Five stages of preservation were identified in CT scans, and an empirical dissolution index, XDX, was established. XDX appears to be insensitive to initial test mass. Mass loss in response to dissolution was similar between species and sites at ~ 0.4 µg/µmol/kg. We provide calibrations to estimate Delta[CO3**2-] and initial test mass from XDX.