2 resultados para Parallel and distributed systems

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether intrinsic molecular properties or extrinsic factors such as environmental conditions control the decomposition of natural organic matter across soil, marine and freshwater systems has been subject to debate. Comprehensive evaluations of the controls that molecular structure exerts on organic matter's persistence in the environment have been precluded by organic matter's extreme complexity. Here we examine dissolved organic matter from 109 Swedish lakes using ultrahigh-resolution mass spectrometry and optical spectroscopy to investigate the constraints on its persistence in the environment. We find that degradation processes preferentially remove oxidized, aromatic compounds, whereas reduced, aliphatic and N-containing compounds are either resistant to degradation or tightly cycled and thus persist in aquatic systems. The patterns we observe for individual molecules are consistent with our measurements of emergent bulk characteristics of organic matter at wide geographic and temporal scales, as reflected by optical properties. We conclude that intrinsic molecular properties are an important control of overall organic matter reactivity.