12 resultados para Pan-European Common Bird Monitoring Scheme
em Publishing Network for Geoscientific
Resumo:
GlobCorine demonstrated an automatic service that can generate in a consistent way land cover / land use maps and land change indicators, based on a CLC-compatible legend. CLC is derived from a visual identification and classification of landscape objects using high resolution images. This methodology provides high thematic accuracy but limits the update rate since it is time-consuming. Therefore, the project evaluated the use of MERIS FR time series, processed automatically to provide a more frequent update of CLC-compatible maps. GlobCorine built upon the experience and resources available through the GlobCover project, to tune the classification chain and adapt it to the EEA needs, covering the pan-European area (including the Mediterranean basin and the European Russia), although the system could be potentially extendable globally. The project delivered two CLC-compatible pan-European land cover maps in less than two years, demonstrating efficient and quick production. The first map is based on Envisat MERIS fine resolution (300m) mode data acquired between end 2004 and mid 2006, while the second used full-year 2009 data. GlobCorine is an initiative of ESA with the partnership of EEA and is implemented by Universite' catholique de Louvain - UCL.
Resumo:
The spatial data set delineates areas with similar environmental properties regarding soil, terrain morphology, climate and affiliation to the same administrative unit (NUTS3 or comparable units in size) at a minimum pixel size of 1km2. The scope of developing this data set is to provide a link between spatial environmental information (e.g. soil properties) and statistical data (e.g. crop distribution) available at administrative level. Impact assessment of agricultural management on emissions of pollutants or radiative active gases, or analysis regarding the influence of agricultural management on the supply of ecosystem services, require the proper spatial coincidence of the driving factors. The HSU data set provides e.g. the link between the agro-economic model CAPRI and biophysical assessment of environmental impacts (updating previously spatial units, Leip et al. 2008), for the analysis of policy scenarios. Recently, a statistical model to disaggregate crop information available from regional statistics to the HSU has been developed (Lamboni et al. 2016). The HSU data set consists of the spatial layers provided in vector and raster format as well as attribute tables with information on the properties of the HSU. All input data for the delineation the HSU is publicly available. For some parameters the attribute tables provide the link between the HSU data set and e.g. the soil map(s) rather than the data itself. The HSU data set is closely linked the USCIE data set.
Resumo:
Notes from Henrik de Nie: The project started as a phenological study in cooperation with the (Dutch) meteorological institute (KNMI) to register the time of arrival of Fitis and Tjiftaf. During 1951 to 1969 he went every day to the wood (except 1966, in this year his wife died). Thereafter he went no more daily, but because he knew the wood very well and he was free to choice the day on which he did a survey, therefore he choose days with relatively good weather. He did not observe very common bird species, maybe because they are dependent on nest boxes and he did not want to be dependent on the management of the nest box-people (in fact I forgot precisely his arguments, and now I cannot ask him this): Common Starling; Eurasian Tree Sparrow (not common); Great Tit; Eurasian Blue Tit Pieter mentioned 14 species that scored many zero values or only one observation: Stock Dove; Common Cuckoo; Lesser Spotted Woodpecker; Eurasian Golden Oriole; Eurasian Nuthatch; Short-toed Treecreeper; Common Nightingale; Marsh Warbler; Lesser Whitethroat; Goldcrest; Common Firecrest (after 1970 he had difficulties in hearing these two species); Spotted Flycatcher; Eurasian Bullfinch; Black Woodpecker He also mentioned species that he found much fewer as: European Greenfinch; European Pied Flycatcher; Long-eared Owl; Red Crossbill; Sedge Warbler; Icterine Warbler; Eurasian Woodcock; Eurasian Siskin; European Green Woodpecker; Great Spotted Woodpecker; Eurasian Hobby; Western Barn Owl; Woodlark; Common Wood Pigeon; Little Owl; European Crested Tit; Hawfinch. But for these species I think that observations are strongly dependent on the number of visits to the wood. Also here, many zeros and few 1 x during the whole series of visits.
Resumo:
Documenting changes in distribution is necessary for understanding species' response to environmental changes, but data on species distributions are heterogeneous in accuracy and resolution. Combining different data sources and methodological approaches can fill gaps in knowledge about the dynamic processes driving changes in species-rich, but data-poor regions. We combined recent bird survey data from the Neotropical Biodiversity Mapping Initiative (NeoMaps) with historical distribution records to estimate potential changes in the distribution of eight species of Amazon parrots in Venezuela. Using environmental covariates and presence-only data from museum collections and the literature, we first used maximum likelihood to fit a species distribution model (SDM) estimating a historical maximum probability of occurrence for each species. We then used recent, NeoMaps survey data to build single-season occupancy models (OM) with the same environmental covariates, as well as with time- and effort-dependent detectability, resulting in estimates of the current probability of occurrence. We finally calculated the disagreement between predictions as a matrix of probability of change in the state of occurrence. Our results suggested negative changes for the only restricted, threatened species, Amazona barbadensis, which has been independently confirmed with field studies. Two of the three remaining widespread species that were detected, Amazona amazonica, Amazona ochrocephala, also had a high probability of negative changes in northern Venezuela, but results were not conclusive for Amazona farinosa. The four remaining species were undetected in recent field surveys; three of these were most probably absent from the survey locations (Amazona autumnalis, Amazona mercenaria and Amazona festiva), while a fourth (Amazona dufresniana) requires more intensive targeted sampling to estimate its current status. Our approach is unique in taking full advantage of available, but limited data, and in detecting a high probability of change even for rare and patchily-distributed species. However, it is presently limited to species meeting the strong assumptions required for maximum-likelihood estimation with presence-only data, including very high detectability and representative sampling of its historical distribution.
Resumo:
River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first assemble an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 12) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950 - December 2015) on a 0.5° x 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.
Resumo:
River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first collect an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 11) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950-December 2014) on a 0.5° × 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.
Resumo:
Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45-70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5-7 km width, build an approx. 40-70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.
Resumo:
Arctic permafrost may be adversely affected by climate change in a number of ways, so that establishing a world-wide monitoring program seems imperative. This thesis evaluates possibilities for permafrost monitoring at the example of a permafrost site on Svalbard, Norway. An energy balance model for permafrost temperatures is developed that evaluates the different components of the surface energy budget in analogy to climate models. The surface energy budget, consisting of radiation components, sensible and latent heat fluxes as well as the ground heat flux, is measured over the course of one year, which has not been accomplished for arctic land areas so far. A considerable small-scale heterogeneity of the summer surface temperature is observed in long-term measurements with a thermal imaging system, which can be reproduced in the energy balance model. The model can also simulate the impact of different snow depths on the soil temperature, that has been documented in field measurements. Furthermore, time series of terrestrial surface temperature measurements are compared to satellite-borne measurements, for which a significant cold-bias is observed during winter. Finally, different possibilities for a world-wide monitoring scheme are assessed. Energy budget models can incorporate different satellite data sets as training data sets for parameter estimation, so that they may constitute an alternative to purely satellite-based schemes.
Resumo:
Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the climate modelling community, socio-ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan-European land cover change for the period 9000 BP to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 BP through reduction in broad-leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan-European scale moved outside the range of previous background variability from 4000 BP onwards. From 2200 BP land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 BP. Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover-climate interactions, and the origins of the modern cultural landscape.
Resumo:
The ground surface temperature is one of the key parameters that determine the thermal regime of permafrost soils in arctic regions. Due to remoteness of most permafrost areas, monitoring of the land surface temperature (LST) through remote sensing is desirable. However, suitable satellite platforms such as MODIS provide spatial resolutions, that cannot resolve the considerable small-scale heterogeneity of the surface conditions characteristic for many permafrost areas. This study investigates the spatial variability of summer surface temperatures of high-arctic tundra on Svalbard, Norway. A thermal imaging system mounted on a mast facilitates continuous monitoring of approximately 100 x 100 m of tundra with a wide variability of different surface covers and soil moisture conditions over the entire summer season from the snow melt until fall. The net radiation is found to be a control parameter for the differences in surface temperature between wet and dry areas. Under clear-sky conditions in July, the differences in surface temperature between wet and dry areas reach up to 10K. The spatial differences reduce strongly in weekly averages of the surface temperature, which are relevant for the soil temperature evolution of deeper layers. Nevertheless, a considerable variability remains, with maximum differences between wet and dry areas of 3 to 4K. Furthermore, the pattern of snow patches and snow-free areas during snow melt in July causes even greater differences of more than 10K in the weekly averages. Towards the end of the summer season, the differences in surface temperature gradually diminish. Due to the pronounced spatial variability in July, the accumulated degree-day totals of the snow-free period can differ by more than 60% throughout the study area. The terrestrial observations from the thermal imaging system are compared to measurements of the land surface temperature from the MODIS sensor. During periods with frequent clear-sky conditions and thus a high density of satellite data, weekly averages calculated from the thermal imaging system and from MODIS LST agree within less than 2K. Larger deviations occur when prolonged cloudy periods prevent satellite measurements. Futhermore, the employed MODIS L2 LST data set contains a number of strongly biased measurements, which suggest an admixing of cloud top temperatures. We conclude that a reliable gap filling procedure to moderate the impact of prolonged cloudy periods would be of high value for a future LST-based permafrost monitoring scheme. The occurrence of sustained subpixel variability of the summer surface temperature is a complicating factor, whose impact needs to be assessed further in conjunction with other spatially variable parameters such as the snow cover and soil properties.
Resumo:
The dataset is composed of 41 samples from 10 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profile and the in situ fluorometer readings: surface, temperature, salinity and fluorescence gradients and 1 m above the bottom. At some stations phytoplankton net samples (20 µm mesh-size) were collected to assist species biodiversity examination. The samples (1l sea water) were preserved in 4% buffered to pH 8-8.2 with disodiumtetraborate formaldehyde solution and stored in plastic containers. On board at each station few live samples were qualitatively examined under microscope for preliminary analysis of taxonomic composition and dominant species. The taxon-specific phytoplankton abundance samples were concentrated down to 50 cm**3 by slow decantation after storage for 20 days in a cool and dark place. The species identification was done under light microscope OLIMPUS-BS41 connected to a video-interactive image analysis system at magnification of the ocular 10X and objective - 40X. A Sedgwick-Rafter camera (1ml) was used for counting. 400 specimen were counted for each sample, while rare and large species were checked in the whole sample (Manual of phytoplankton, 2005). Species identification was mainly after Carmelo T. (1997) and Fukuyo, Y. (2000). Total phytoplankton abundance was calculated as sum of taxon-specific abundances. Total phytoplankton biomass was calculated as sum of taxon-specific biomasses. The cell biovolume was determined based on morpho-metric measurement of phytoplankton units and the corresponding geometric shapes as described in detail in (Edier, 1979).