497 resultados para Paleontology -- Queensland

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A geochemical and paleontological reconstruction of paleoproductivity, upwelling intensity and sea surface temperature (SST) off central Chile at 35°S (GeoB3359-3) reveals marked changes from the Last Glacial Maximum (LGM) through the Early Holocene. Surface-water productivity was determined by the interaction between the atmospheric (the Southern Westerlies) and oceanographic (the Antarctic Circumpolar Current, ACC) systems from the LGM through early Termination I (TI). The northward shift of the climate zones during the LGM brought the ACC, as the main macronutrient source, closer to the GeoB3359-3, SST lowered, and surface water productivity and accumulation rates of biogenic components enhanced. With the poleward return of the Southern Westerlies and the ACC, the subtropical high-pressure system became the dominant atmospheric component southward till 35°S during the late TI and Early Holocene and caused surface water productivity to increase through enhanced upwelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2-4 nmol/mg of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 18,400 km**2 of seagrass habitat has been mapped within the coastal waters (<15 m) of Queensland (Australia) between November 1984 and June 2010. The total seagrass meadow distribution was calculated by merging maps from 115 separate mapping surveys (varying locations and dates). Due to tropical seagrass dynamism, meadow distribution can change seasonally and between years, and as a consequence, the composite represents the maximum area of seabed where seagrass has been observed/recorded. Mapping survey methodologies followed standardised global seagrass research methods (McKenzie et al. 2001) where the presence of seagrass was determined from in situ visual assessment of the seabed by either divers or drop cameras at GPS marked positions. Seagrass meadow boundaries were determined based on the positions of survey sites and the presence of seagrass, coupled with depth contours and remote sensing (e.g. aerial photography) where available. The merged meadow boundary accuracy was dependent on the original survey maps and varied from 10-100 m. The resulting composite seagrass distribution was saved as an ArcMap polygon shapefile, and projected to Geocentric Datum of Australia GDA94.