3 resultados para Pair Linkage

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising levels of atmospheric CO2 are responsible for a change in the carbonate chemistry of seawater with associated pH drops (acidification) projected to reach 0.4 units from 1950 to 2100. We investigated possible indirect effects of seawater acidification on the feeding, fecundity, and hatching success of the calanoid copepod Acartia grani, mediated by potential CO2-induced changes in the nutritional characteristics of their prey. We used as prey the autotrophic dinoflagellate Heterocapsa sp., cultured at three distinct pH levels (control: 8.17, medium: 7.96, and low: 7.75) by bubbling pure CO2 via a computer automated system. Acartia grani adults collected from a laboratory culture were acclimatized for 3 d at food suspensions of Heterocapsa from each pH treatment (ca. 500 cells/ml; 300 ?g C/l). Feeding and egg production rates of the preconditioned females did not differ significantly among the three Heterocapsa diets. Egg hatching success, monitored once per day for the 72 h, did not reveal significant difference among treatments. These results are in agreement with the lack of difference in the cellular stoichiometry (C : N, C : P, and N : P ratios) and fatty acid concentration and composition encountered between the three tested Heterocapsa treatments. Our findings disagree with those of other studies using distinct types of prey, suggesting that this kind of indirect influence of acidification on copepods may be largely associated with interspecific differences among prey items with regard to their sensitivity to elevated CO2 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.