11 resultados para Painting, Modern - Appreciation - 20th century

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate aragonitic skeletons of the Caribbean sclerosponge Ceratoporella nicholsoni from Jamaica, 20 m below sea level (mbsl), and Pedro Bank, 125 mbsl. We use d18O and Sr/Ca ratios as temperature proxies to reconstruct the Caribbean mixed layer and thermocline temperature history since 1400 A.D. with a decadal time resolution. Our age models are based on U/Th dating and locating of the radiocarbon bomb spike. The modern temperature difference between the two sites is used to tentatively calibrate the C. nicholsoni Sr/Ca thermometer. The resulting calibration points to a temperature sensitivity of Sr/Ca in C. nicholsoni aragonite of about -0.1 mmol/mol/K. Our Sr/Ca records reveal a pronounced warming from the early 19th to the late 20th century, both at 20 and 125 mbsl. Two temperature minima in the shallow water record during the late 17th and early 19th century correspond to the Maunder and Dalton sunspot minima, respectively. Another major cooling occurred in the late 16th century and is not correlatable with a sunspot minimum. The temperature contrast between the two sites decreased from the 14th century to a minimum in the late 17th century and subsequently increased to modern values in the early 19th century. This is interpreted as a long-term deepening and subsequent shoaling of the Caribbean thermocline. The major trends of the Sr/Ca records are reproduced in both specimens but hardly reflected in the d18O records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Holocene development of a treed palsa bog and a peat plateau bog, located near the railroad to Churchill in the Hudson Bay Lowlands of northeastern Manitoba, was traced using peat macrofossil and radiocarbon analyses. Both sites first developed as wet rich fens through paludification of forested uplands around 6800 cal. yr BP. Results show a 20th-century age for the palsa formation and repeated periods of permafrost aggradation and collapse at the peat plateau site during the late Holocene. This timing of permafrost dynamics corroborates well with that inferred from previous studies on other permafrost peatlands in the same region. The developmental history of the palsa and peat plateau bogs is similar to that of adjacent permafrost-free fens, except for the specific frost heave and collapse features associated with permafrost dynamics. Permafrost aggradation and degradation is ascribed to regional climatic, local autogenic and other factors. Particularly the very recent palsa development can be assessed in terms of climatic changes as inferred from meteorological data and surface hydrological changes related to construction of the railroad. The results indicate that cold years with limited snowfall as well as altered drainage patterns associated with infrastructure development may have contributed to the recent palsa formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paleotemperature estimates based on coral Sr/Ca have not been widely accepted because the reconstructed glacial-Holocene shift in tropical sea-surface temperature (~4-6°C) is larger than that indicated by foraminiferal Mg/Ca (~2-4°C). We show that corals over-estimate changes in sea-surface temperature (SST) because their records are attenuated during skeletogenesis within the living tissue layer. To quantify this process, we microprofiled skeletal mass accumulation within the tissue layer of Porites from Australasian coral reefs and laboratory culturing experiments. The results show that the sensitivity of the Sr/Ca and d18O thermometers in Porites will be suppressed, variable, and dependent on the relationship between skeletal growth rate and mass accumulation within the tissue layer. Our findings help explain why d18O-SST sensitivities for Porites range from -0.08 per mil/°C to -0.22 per mil/°C and are always less than the value of -0.23 per mil/°C established for biogenic aragonite. Based on this observation, we recalibrated the coral Sr/Ca thermometer to determine a revised sensitivity of -0.084 mmol/mol/°C. After rescaling, most of the published Sr/Ca-SST estimates for the Indo-Pacific region for the last ~14,000 years (-7°C to +2°C relative to modern) fall within the 95% confidence envelope of the foraminiferal Mg/Ca-SST records. We conclude that two types of calibration scales are required for coral paleothermometry; an attenuated Porites-specific thermometer sensitivity for studies of seasonal to interannual change in SST and, importantly, the rescaled -0.084 mmol/mol/°C Sr/Ca sensitivity for studies of 20th-century trends and millennial-scale changes in mean SST. The calibration-scaling concept will apply to the development of transfer functions for all geochemical tracers in corals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollen and macrofossil evidence for the nature of the vegetation during glacial and interglacial periods in the regions south of the Wisconsinan ice margin is still very scarce. Modern opinions concerning these problems are therefore predominantly derived from geological evidence only or are extrapolated from pollen studies of late Wisconsinan deposits. Now for the first time pollen and macrofossil analyses are available from south-central Illinois covering the Holocene, the entire Wisconsinan, and most probably also Sangamonian and late Illinoian time. The cores studied came from three lakes, which originated as kettle holes in glacial drift of Illinoian age near Vandalia, Fayette County. The Wisconsinan ice sheet approached the sites from the the north to within about 60 km distance only. One of the profiles (Pittsburg Basin) probably reaches back to the late Illinoian (zone 1), which was characterized by forests with much Picea. Zone 2, most likely of Sangamonian age, represents a period of species-rich deciduous forests, which must have been similar to the ones that thrive today south and southeast of the prairie peninsula. During the entire Wisconsinan (14C dates ranging from 38,000 to 21,000 BP) thermophilous deciduous trees like Quercus, Carya, and Ulmus occurred in the region, although temporarily accompanied by tree genera with a more northerly modern distribution, such as Picea, which entered and then left south-central Illinois during the Woodfordian. Thus it is evident that arctic climatic conditions did not prevail in the lowlands of south-central Illinois (about 38°30' lat) during the Wisconsinan, even at the time of the maximum glaciation, the Woodfordian. The Wisconsinan was, however, not a period of continuous forest. The pollen assemblages of zone 3 (Altonian) indicate prairie with stands of trees, and in zone 4 the relatively abundant Artemisia pollen indicates the existence of open vegetation and stands of deciduous trees, Picea, and Pinus. True tundra may have existed north of the sites, but if so its pollen rain apparently is marked by pollen from nearby stands of trees. After the disappearance of Pinus and Picea at about 14,000 BP (estimated!), there developed a mosaic of prairies and stands of Quercus, Carya, and other deciduous tree genera (zone 5). This type of vegetation persisted until it was destroyed by cultivation during the 19th and 20th century. Major vegetational changes are not indicated in the pollen diagram for the late Wisconsinan and the Holocene. The dating of zones 1 and 2 is problematical because the sediments are beyond the14C range and because of the lack of stratigraphic evidence. The zones dated as Illinoian and Sangamonian could also represent just a Wisconsinan stadial and interstadial. This possibility, however, seems to be contradicted by the late glacial and interglacial character of the forest vegetation of that time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the period in question, large ice drifts transported incalculable numbers of icebergs, ice fields and ice floes from the Antarctica into the South Atlantic, confronting long-journeying sailing ships on the Cape Horn route with considerable danger. As is still the case today, the ice drifts generally tended in a northeasterly direction. Thus it can be assumed that the ice masses occuring near Cape Horn and in the South Atlantic originated in Graham Land and the South Shetland Islands, while those found in the Pacific will have come from Victoria Land. The masses drifting to Cape Horn, Isla de los Estados, the Falkland Islands and occasionally as far as the Tristan da Cunha Group are transported by the West Wind Drift and Falkland Current, diverted by the Brazil Current. The Bouvet and Agulhas Currents have little influence here. The great ice masses repeatedly reached points beyond the "outermost drift ice boundery" calculated in the course of the years, to continue on in the direction of the equator. The number of sailing ships which fell victim to the ice drifts while rounding Cape Horn can only be surmised; they simply disappeared without a trace in the expanses of the South Atlantic. Until the end of the 1900s the dangers presented by ice were less serious for westward-bound ships than for the "homeward-bounders" travelling from West to East. Following the turn of the century, however, the risk for "onwardbounders" increased significantly. Whether the ice drifts actually grew in might or whether the more frequent and more detailed reports led to this impression, could never be ascertained by the German Hydrographie Office. In the forty-one years between 1868 and 1908, ten light, ten medium and nine heavy ice years were counted, and only twelve years in which no reports of ice were submitted to the German Hydrographie Office. "One of the most terrible dangers threatening ships on their return from the Pacific Ocean," the pilot book for the Atlantic Ocean warns, "is the encounter with ice, to be expected south of the 50th parallel (approx.) in the Pacific and south of the 40th parallel (approx.) in the South Atlantic." Following the ice drift of 1854-55, thought to be the first ever recorded, the increasing numbers of sailing ships rounding Cape Horn were frequently confronted with drifts of varying sizes or with single icebergs. Then from 1892-94, a colossal ice drift crossed the path of the sailships in three stages. Several sailing ships collided with the icebergs and could be counted lucky if they survived with heavy damage to the bow and the fo regear. The reports on those which vanished for ever in the ice masses are hardly of investigative value. The English suffered particularly badly in the ice-plagued waters; their captains apparently sailed courses that led more freqently through drifts than did the sailing instructions of the German Hydrographic Office. Thus, among others, Capt. Jarvis' DUNTRUNE, also the STANMORE, ARTHURSTONE and LORD RANOCH as well as the French GALATHEE and CASHMERE all collided with icebergs. The crew of the AETHELBERTH panicked after a collision and took to their lifeboats. It was only after the ship detached itself from the iceberg it had rammed that the men returned to it and continued their journey. The TEMPLEMORE, on the other hand, had to be abandoned for good. Of the German sailing ships, the FLOTOW is to be mentioned here, and in the third phase of the drift the American SAN JOAQUIN lost a large proportion of its rigging. In the 20th century ice drifts continued to cross the courses of the Cape Horn ships. 1906 and 1908 were recorded as particularly heavy ice years. In 1908-09 both the FALKLANDBANK and the TOXTETH fell prey to ice, or so it was assumed during the subsequent Maritime Board proceedings. For the most part the German sailing ships were spared greater damages by sea. Their captains sent detailed ice reports to the German Hydrographic Office, which gratefully welcomed the information and partially incorporated it in the third and final edition of the "Pilot Book for the Atlantic Ocean." From the end of 1926 until the beginning of 1928, the last of the large sailing ships were once again confronted with "tremendous masses of icebergs and ice drifts." Reports of this period originated above all on the P-Liners PADUA, PAMIR, PASSAT, PEKING, PINNAS, PRIWALL and the ships of Gustav Erikson's fleet. The fate of the training sailship ADMIRAL KARPFANGER in connection with the ice in early 1938 was never clearly determined by the Maritime Board proceedings. Collision with an iceberg, however, is thought to be the most likely cause of accident. Today freight sailing ships no longer cross the oceans. The Cape Horn route is relatively insignificant for engine-powered ships and icebergs can be spotted in plenty of time by modern navigation technology ... The large ice drifts are no longer a menace, but only a marginal note in the final chapter of the history of transoceanic sailing.