6 resultados para Pahs
em Publishing Network for Geoscientific
Resumo:
Distribution and composition of lipids and contents of alkanes and polycyclic aromatic hydrocarbons(PAHs) in bottom sediments of the Scotia and Weddell seas are discussed. Comparatively low concentrations of organic carbon (average 0.35%) and lipids (average 0.024%) result from rapid decomposition of organic matter in upper layers of the water column. Composition of alkanes indicates that lipids are of autochthonous origin, and stable concentrations of PAHs (average 25.8 ppb, sigma 15.3 ppb) indicate that they represent the background level for bottom sediments. Higher concentrations of PAHs in sediments near the King George Island (252.1 ppb) and different distributions of individual polyarenes are produced there by the heating systems of the Polish Antarctic Station.
Resumo:
The Baltic Sea is a semi-enclosed sea with a steady salinity gradient (3 per mil-30 per mil). Organisms have adapted to such low salinities, but are suspected to be more susceptible to stress. Within the frame of the integrated environmental monitoring BONUS + project "BEAST" the applicability of immune responses of the blue mussel was investigated in Danish coastal waters. The sampling sites were characterised by a salinity range (11-19 per mil) and different mixtures of contaminants (metals, PAHs and POPs), according to chemical analysis of mussel tissues. Variation partitioning (redundancy analysis) was applied to decompose salinity and contamination effects. The results indicated that cellular immune responses (total and differential haemocyte count, phagocytic activity and apoptosis) were mainly influenced by contaminants, whereas humoral factors (haemolytic activity) were mainly impacted by salinity. Hence, cellular immune functions may be suitable as biomarkers in monitoring programmes for the Baltic Sea and other geographic regions with salinity variances of the studied range.
Resumo:
Data on contents and compositions of hydrocarbons (HCs)-aliphatic (AHCs) and polycyclic aromatic (PAHs) are provided in comparison with contents of total organic carbon (Corg), lipids in suspended matter, and Corg in bottom sediments. Particular attention is paid to distribution of HCs in the area of the Kravtsov oil field. It is established that concentrations of AHCs in water are governed by concentrations of suspended matter and elevated AHC concentrations are confined to coastal areas. In the area of D-6 platform sandy bottom sediments are notable for great variability of HC concentrations, both laterally and from year to year. In summer of 2010 average content of AHCs was 40 ppm (19% of Corg) and that of PAHs was 0.023 ppm. Natural seepage from sediment mass is considered to be a source of HCs along with oil contamination.
Resumo:
Sub-micron marine aerosol particles (PM1) were collected during the MERIAN cruise MSM 18/3 between 22 June 2011 and 21 July 2011 from the Cape Verde island Sao Vicente to Gabun crossing the tropical Atlantic Ocean and passing equatorial upwelling areas. According to air mass origin and chemical composition of the aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin, in the second part was marine and slightly biomass burning influenced (increasing tendency) and in the in last part of the cruise, approaching the African mainland, biomass burning influences became dominant. Generally aerosols were dominated by sulfate (caverage = 1.99 µg/m**3) and ammonium ions (caverage = 0.72 µg/m**3) that are well correlated and slightly increasing along the cruise. High concentrations of water insoluble organic carbon (WISOC) averaging 0.51 µg/m**3 were found probably attributed to the high oceanic productivity in this region. Water soluble organic carbon (WSOC) was strongly increasing along the cruise from concentrations of 0.26 µg/m**3 in the mainly marine influenced part to concentrations up to 3.3 µg/m**3 that are probably caused by biomass burning influences. Major organic constituents were oxalic acid, methansulfonic acid (MSA) and aliphatic amines. MSA concentrations were quite constant along the cruise (caverage = 43 ng/m**3). While aliphatic amines were more abundant in the first mainly marine influenced part with concentrations of about 20 ng/m**3, oxalic acid showed the opposite pattern with average concentrations of 12 ng/m**3 in the marine and 158 ng/m**3 in the biomass burning influenced part. The alpha dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng/m**3 range and followed oxalic acid closely. MSA and aliphatic amines accounted for biogenic marine (secondary) aerosol constituents whereas oxalic acid and the alpha dicarbonyl compounds were believed to result mainly from biomass burning. N-alkane concentrations increased along the cruise from 0.81 to 4.66 ng/m**3, PAHs and hopanes were abundant in the last part of the cruise (caverage of PAHs = 0.13 ng/m**3, caverage of hopanes = 0.19 ng/m**3). Levoglucosan was identified in several samples of the last part of the cruise in concentrations around 2 ng/m**3, pointing to (aged) biomass burning influences. The investigated organic compounds could explain 9.5% of WSOC in the mainly marine influenced part (dominating compounds: aliphatic amines and MSA) and 2.7% of WSOC in the biomass burning influenced part (dominating compound: oxalic acid) of the cruise.
Resumo:
A probabilistic function (integrated source contribution function, ISCF) based on backward air mass trajectory calculation was developed to track sources and atmospheric pathways of polycyclic aromatic hydrocarbons (PAHs) to the Canadian High Arctic station of Alert. In addition to the movement of air masses, the emission intensities at the sources and the major processes of partition, indirect photolysis, and deposition occurring on the way to the Arctic were incorporated into the ISCF. The predicted temporal trend of PAHs at Alert was validated by measured PAH concentrations throughout 2004. The PAH levels in the summer are orders of magnitude lower than those in the winter and spring when long-range atmospheric transport events occur more frequently. PAHs observed at Alert are mostly from East Asia (including Russia Far East), North Europe (including European Russia), and North America. These sources account for 25, 45, and 27% of PAHs atmospheric level at Alert, respectively. Source regions and transport pathways contributing to the PAHs contamination in the Canadian High Arctic vary seasonally. In the winter, Russia and Europe are the major sources. PAHs from these sources travel eastward and turn to the north at approximately 120°E before reaching Alert, in conjunction with the well- known Arctic haze events. In the spring, PAHs from Russia and Europe first migrate to the west and then turn to the north at 60°W toward Alert. The majority of PAHs in the summer are from northern Canada where they are carried to Alert via low- level transport pathways. In the fall, 70% of PAHs arriving at Alert are delivered from North American sources.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which can be derived from anthropogenic sources, such as combustion and discharges from extraction and transport, and natural processes, including leakage and erosion of fossil carbon. Natural PAH sources contribute, along with biological activities and terrestrial run-off, to the organic carbon content in sediments.The Barents Sea region is far from many anthropogenic sources of PAH, but production and trans-shipment of hydrocarbons is increasing. We present data for polycyclic aromatic hydrocarbon (PAH) concentrations in bottom sediments from 510 stations in the Barents and White Seas, and along the northern coast of Norway.