4 resultados para PTFE O-2-FED CATHODE

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mid-Holocene climate optimum is inferred from a palaeosalinity reconstruction of a closed saline lake (Beall Lake) from the Windmill Islands, East Antarctica using an expanded diatom salinity weighted averaging (WA) regression and calibration model. The addition of 14 lakes and ponds from the Windmill Islands, East Antarctica, to an existing weighted averaging regression and calibration palaeosalinity model of 33 lakes from the Vestfold Hills, East Antarctica expands the number of taxa and lakes and the range of salinity in the existing model and improves the model's predictive ability. This improved model was used to infer Holocene changes in lake water salinity in Beall Lake, Windmill Islands. Six changes in diatom-inferred salinity in Beall Lake are put into broad chronological context based on three radiocarbon dates: as the East Antarctic Ice Sheet (EAIS) retreated from the Windmill Islands during the early Holocene (~9000-8130 corr. yr BP), Beall Lake formed as a melt water-fed freshwater lake, which gradually became more saline as marine influence increased from ~8000 corr. yr BP. Between ~8000 and 4800 corr. yr BP, the diatom assemblage included planktonic marine taxa such as Chaetoceros spp. and cryophilic taxa such as Fragilariopsis cylindrus, which indicate favourable summer growth conditions. A mid-Holocene warm period produced a climate that was warmer and more humid with increased precipitation and snow accumulation. This is reflected in the Beall Lake core as a reduction in the salinity of the lake diatom assemblage from ~4800-4600 corr. yr BP. Holocene isostatic uplift rates in the Windmill Islands vary from 5-6 m/1000 yr. By applying this uplift rate, it is calculated that the bedrock would have risen above sea level by ~4000 yr BP. The Beall Lake core diatom assemblage from ~4600-2900 corr. yr BP includes both marine cryophilic and planktonic taxa together with freshwater benthic and planktonic lacustrine taxa. This mix of species indicates the emergence of the lake from the sea around ~4600 corr. yr BP. From ~2800 corr. yr BP, retreat of the ice margin led to increasing melt water inputs and associated freshening of the lake basin until ~1900 corr. yr BP. The lake basin had no oceanic influence by this time, allowing a terrestrial freshwater flora to establish and thrive for the next ~1000 yr. At ~1850 corr. yr BP, a sudden and rapid salinity change is evident in Beall Lake. A late Holocene warm period between 2000 and 1000 yr BP has been observed in ice core records from Law Dome (an ice cap abutting the Windmill Islands to the east and north). It is therefore inferred that, at ~1850 corr. yr BP, summer temperatures within the Beall Lake catchment area were much higher than present summer temperatures. The climate optimum identified in the Beall Lake core ~4800 yr BP confirms mid-Holocene warming of the Windmill Islands and suggests a synchronous mid-Holocene climate optimum occurred across coastal East Antarctica. In addition, the abrupt climate change inferred at ~1850 yr BP suggests that higher resolution sampling of sediment cores from coastal East Antarctic limnological oases will provide more evidence of rapid climate change events over coastal East Antarctica in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CHIM method involves extracting metal ions of electromobile forms in either anodes or cathodes, facilitated by a man-made electric field. This paper presents two newly developed CHIM alternatives that are electrified by a low voltage dipole. The firstly improved technique enables cationic ions to be extracted in a single cathode, whereas the secondly improved technique allows both anionic and cationic species to be extracted simultaneously in an anode and in a cathode. Compared with the traditional CHIM methods, the innovative techniques developed in this paper are characterized by simple instrumentation, low cost and easy operation in field, and in particular enables simultaneous extraction of anionic and cationic species of elements, from which more information can be derived with higher extraction efficiency. Field tests at several well-known mine areas in China confirm the effectiveness and efficiency of the new techniques in exploring for deeply buried ore bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two high-resolution sediment cores from eastern Fram Strait have been investigated for sea subsurface and surface temperature variability during the Holocene (the past ca 12,000 years). The transfer function developed by Husum and Hald (2012) has been applied to sediment cores in order to reconstruct fluctuations of sea subsurface temperatures throughout the period. Additional biomarker and foraminiferal proxy data are used to elucidate variability between surface and subsurface water mass conditions, and to conclude on the Holocene climate and oceanographic variability on the West Spitsbergen continental margin. Results consistently reveal warm sea surface to subsurface temperatures of up to 6 °C until ca 5 cal ka BP, with maximum seawater temperatures around 10 cal ka BP, likely related to maximum July insolation occurring at that time. Maximum Atlantic Water (AW) advection occurred at surface and subsurface between 10.6 and 8.5 cal ka BP based on both foraminiferal and dinocyst temperature reconstructions. Probably, a less-stratified, ice-free, nutrient-rich surface ocean with strong AW advection prevailed in the eastern Fram Strait between 10 and 9 cal ka BP. Weakened AW contribution is found after ca 5 cal ka BP when subsurface temperatures strongly decrease with minimum values between ca 4 and 3 cal ka BP. Cold late Holocene conditions are furthermore supported by high planktic foraminifer shell fragmentation and high d18O values of the subpolar planktic foraminifer species Turborotalita quinqueloba. While IP25-associated indices as well as dinocyst data suggest a sustained cooling due to a decrease in early summer insolation and consequently sea-ice increase since about 7 cal ka BP in surface waters, planktic foraminiferal data including stable isotopes indicate a slight return of stronger subsurface AW influx since ca 3 cal ka BP. The observed decoupling of surface and subsurface waters during the later Holocene is most likely attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface AW advection. This may be related to changes in North Atlantic subpolar versus subtropical gyre activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most authigenic carbonates previously recovered from the Cascadia slope have 87Sr/86Sr signatures that reflect shallow precipitation in equilibrium with coeval seawater. There is also evidence for carbonate formation supported by fluids that have been modified by reactions with the incoming Juan de Fuca plate (87Sr/86Sr = 0.7071; Teichert et al., 2005, doi:10.1016/j.epsl.2005.08.002) or with terrigenous turbidites (87Sr/86Sr = 0.70975 to 0.71279; Sample et al., 1993, doi:10.1130/0091-7613(1993)021<0507:CCICFF>2.3.CO;2). We report on the strontium isotopic composition of carbonates and fluids from IODP Site U1329 and nearby Barkley Canyon (offshore Vancouver Island), which have strontium isotope ratios as low as 0.70539. Whereas the strontium and oxygen isotopic compositions of carbonates from paleoseeps in the uplifted Coast Range forearc indicate formation in ambient bottom seawater, several samples from the Pysht/Sooke Fm. show a 87Sr-depleted signal (87Sr/86Sr = 0.70494 and 0.70511) similar to that of the anomalous Site U1329 and Barkley Canyon carbonates. Our data, when analyzed in the context of published elemental and isotopic composition of these carbonates (Joseph et al., 2012, doi:10.1016/j.palaeo.2013.01.012 ), point to two formation mechanisms: 1) shallow precipitation driven by the anaerobic oxidation of methane (AOM) with d13C values as low as -50 per mil and contemporaneous 87Sr/86Sr seawater ratios, and 2) carbonate precipitation driven by fluids that have circulated through the oceanic crust, which are depleted in 87Sr. Carbonates formed from the second mechanism precipitate both at depth and at sites of deep-sourced fluid seepage on the seafloor. The 87Sr-depleted carbonates and pore fluids found at Barkley Canyon represent migration of a deep, exotic fluid similar to that found in high permeability conglomerate layers at 188 mbsf of Site U1329, and which may have fed paleoseeps in the Pysht/Sooke Fm. These exotic fluids likely reflect interaction with the 52-57 Ma igneous Crescent Terrane, which supplies fluids with high calcium, manganese and strontium enriched in the non-radiogenic nucleide. Tectonic compression and dehydration reactions then force these fluids updip, where they pick up the thermogenic hydrocarbons and 13C-enriched dissolved inorganic carbon that are manifested in fluids and carbonates sampled at Barkley Canyon and at Site U1329. The Crescent Terrane may have sourced cold seeps in this margin since at least the late Oligocene.