67 resultados para PRECAMBRIAN
em Publishing Network for Geoscientific
Resumo:
A high-resolution carbon isotope profile through the uppermost Neoproterozoic-Lower Cambrian part of the Sukharikha section at the northwestern margin of the Siberian platform shows prominent secular oscillations of d13C with peak-to-peak range of 6-10 ?. There are six minima, 1n-6n, and seven maxima 1p-7p, in the Sukharikha Formation and a rising trend of d13C from the minimum 1n of -8.6 ? to maximum 6p of +6.4 ?. The trough 1n probably coincides with the isotopic minimum at the Precambrian-Cambrian boundary worldwide. Highly positive d13C values of peaks 5p and 6p are typical of the upper portion of the Precambrian-Cambrian transitional beds just beneath the Tommotian Stage in Siberia. A second rising trend of d13C is observed through the Krasnoporog and lower Shumny formations. It consists of four excursions with four major maxima that can be cor related with Tommotian-Botomian peaks II, IV, V, and VII of the reference profile from the southeastern Siberian platform. According to the chemostratigraphic cor relation, the first appearances of the index forms of archaeocyaths are earlier in the Sukharikha section than in the Lena-Aldan region.
Resumo:
Summary: The stratigraphy of the Shackleton Range established by Stephenson (1966) and Clarkson (1972) was revised by results of the German Expedition GEISHA 1987/88. The "Turnpike Bluff Group" does not form a stratigraphic unit. The stratigraphic correlation of its formations is still a matter of discussion. The following four formations are presumed to belong to different units: The Stephenson Bastion Formation and Wyeth Heights Formation are probably of Late Precambrian age. The Late Precambrian Watts Needle Formation, which lies unconformably on the Read Group, is an independant unit which has to be separated from the "Turnpike Bluff Group". The Mount Wegener Formation has been thrusted over the Watts Needle Formation. Early Cambrian fossils (Oldhamia sp., Epiphyton sp., Botomaella (?) sp. and echinoderms) were found in the Mt. Wegener Formation in the Read Mountains. The Middle Cambrian trilobite shales on Mount Provender, which form the Haskard Highlands Formation, are possibly in faulted contact with the basement complex (Pioneers and Stratton Groups). They are overlain by the Blaiklock Glacier Group, for which an Ordovician age is indicated by trilobite tracks and trails, low inclination of the paleomagnetic field and the similarity to the basal units of the Table Mountain Quartzite in South Africa. The Watts Needle Formation represents epicontinental shelf sediments, the Mount Wegener Formation was deposited in a (continental) back-arc environment, and the Blaiklock Glacier Group is a typical molasse sediment of the Ross Orogen.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
Native Cu occurs in amygdules, fractures and groundmass of tholeiites from Ocean Drilling Program Site 642 on the Vøring Plateau. Similar occurrences have been reported in other tholeiites of the early Tertiary North Atlantic Volcanic Province drilled at Deep Sea Drilling Project Sites 342 on the Vøring Plateau and 553 on the Rockall Plateau. The flows containing the native Cu have distinctive alteration patterns characterized by the combination of reddened flow tops, distinctive pastel coloration of the upper parts of the flows, relative abundance of celadonite, and the presence of native Cu. These associations suggest that subaerial weathering and subsequent seawater-basalt interaction are related to the occurrence of native Cu. An additional factor may be the increase in compatibility of Cu in silicates and Fe- Ti oxides that may accompany sub-solidus oxidation of basaltic flows. Native Cu occurrences in Site 642 tholeiites have some striking similarities to the large native Cu deposits in the Precambrian basalts of the Keweenaw Peninsula, Michigan, that are suggestive of similar mineralization processes.
Resumo:
Site details: The raised bog Fláje-Kiefern (50°429N, 13°329 E; 760 m a.s.l.; size ca. 500x500 m) lies in the Krusné Hory Mountains (Erzgebirge), Czech Republic, about 10 km from Georgenfelder Moor in Germany. Hejny and Slavík (1988) described the phytogeographic region of the Krusne Hory Mountains as 'a region of mountain flora and vegetation, with thermophilous species largely missing. In the natural forests, conifers, especially spruce (Picea excelsa) prevail. The deforested areas have been converted into meadows and pastures'. The climate is cool with annual average temperatures of about 5°C and annual precipitation of about 900 mm. The bedrock is Precambrian crystallinicum.
Resumo:
Modern microbial mats are widely recognized as useful analogs for the study of biogeochemical processes relevant to paleoenvironmental reconstruction in the Precambrian. We combined microscopic observations and investigations of biomarker composition to investigate community structure and function in the upper layers of a thick phototrophic microbial mat system from a hypersaline lake on Kiritimati (Christmas Island) in the Northern Line Islands, Republic of Kiribati. In particular, an exploratory incubation experiment with 13C-labeled bicarbonate was conducted to pinpoint biomarkers from organisms actively fixing carbon. A high relative abundance of the cyanobacterial taxa Aphanocapsa and Aphanothece was revealed by microscopic observation, and cyanobacterial fatty acids and hydrocarbons showed 13C-uptake in the labeling experiment. Microscopic observations also revealed purple sulfur bacteria (PSB) in the deeper layers. A cyclic C19:0 fatty acid and farnesol were attributed to this group that was also actively fixing carbon. Background isotopic values indicate Calvin-Benson cycle-based autotrophy for cycC19:0 and farnesol-producing PSBs. Biomarkers from sulfate-reducing bacteria (SRB) in the top layer of the mat and their 13C-uptake patterns indicated a close coupling between SRBs and cyanobacteria. Archaeol, possibly from methanogens, was detected in all layers and was especially abundant near the surface where it contained substantial amounts of 13C-label. Intact glycosidic tetraether lipids detected in the deepest layer indicated other archaea. Large amounts of ornithine and betaine bearing intact polar lipids could be an indicator of a phosphate-limited ecosystem, where organisms that are able to substitute these for phospholipids may have a competitive advantage.
Resumo:
Measurements of 87Sr/86Sr on samples of planktonic foraminifers were used to reconstruct changes in the Sr isotopic composition of seawater for the past 8 Ma. The late Neogene was marked by a general, but not regular, increase in 87S/86Sr with two breaks in slope at 5.5 and 2.5 Ma. These times mark the beginning of two periods of steep increase in 87Sr/86Sr values, relative to preceding periods characterized by essentially constant values. During the last 2.5 Ma, 87Sr/86Sr values increased at an average rate of 0.000054/Ma. This steep increase suggests that the modem ocean is not in Sr isotopic equilibrium relative to its major input fluxes. A non-equilibrium model for the modern Sr budget suggests that the residence time of Sr is ~2.5 Ma, which is significantly less than previously accepted estimates of 4-5 Ma. Modelling results suggest that the increase in 87Sr/86Sr over the past 8 Ma could have resulted from a 25% increase in the riverine flux of Sr or an increase in the average 87Sr/86Sr of this flux by 0.0006. The dominant cause of increasing 87Sr/86Sr values of seawater during the late Neogene is believed to be increased rates of uplift and chemical weathering of mountainous regions. Calculations suggest that uplift and weathering of the Himalayan-Tibetan region alone can account for the majority of the observed 87Sr/86Sr increase since the early Late Miocene. Exhumation of Precambrian shield areas by continental ice-sheets may have contributed secondarily to accelerated mechanical and chemical weathering of old crustal silicates with high 87Sr/86Sr values. In fact, the upturn in 87Sr/86Sr at 2.5 Ma coincides with increased glacial activity in the Northern Hemisphere. A variety of geochemical (87Sr/86Sr, Ge/Si, d13C, CCD, etc.) and sedimentologic data (accumulation rates) from the marine sedimentary record are compatible with a progressive increase in the chemical weathering rate of continents and dissolved riverine fluxes during the late Cenozoic. We hypothesize that chemical weathering of the continents and dissolved riverine fluxes to the oceans reached a maximum during the late Pleistocene because of repeated glaciations, increased continental exposure by lowered sea level, and increased continental relief resulting from high rates of tectonism.
Resumo:
The Carnian to Norian sediments, as much as 600 m in total thickness, recovered from ODP Sites 759 and 760 on the Wombat Plateau, are generally represented by fluvial-dominated deltaic successions. In general, the Carnian to Norian sandstones are quartzose. The average ratio of monocrystalline quartz grains, total feldspar grains, and total lithic fragments (i.e., Qm:F:Lt ratio) is 71:22:7. This indicates that they were derived mainly from the transitional continental and cratonic interior provenance terranes, such as the Pilbara Precambrian block to the south of the Wombat Plateau. The upper Carnian sediments, however, are characterized by more feldspathic sandstone petrofacies. They typically contain some volcanic rock fragments with trachytic texture and indicate the onset of the incipient rift-related tectonic movement, such as uplift and subsequent abrupt basin subsidence, together with volcanism in the Gondwana continental block. Mixed siliciclastic and carbonate cycles are typically intercalated in the prodelta to delta front deposits that developed mainly in a lagoon-like, restricted marine environment. The restricted marine environment developed during transgressions as the outflow of shallow water was restricted by depositional barriers. Around the barriers and/or delta lobes, carbonate shoals/banks were probably developed and the allochemical components of the neritic limestones may have been transported into the restricted marine environment by overwash processes and/or storm waves. Siliciclastic detritus, on the other hand, was mainly derived accompanied by delta progradation dominated by fluvial processes in the restricted marine environment. Therefore, we interpret the mixed siliciclastic and carbonate cycles in the deltaic successions to be a result of transgression-regression cycles in a deltaic system during the Late Triassic.