7 resultados para POTENTIAL-ENERGY CURVES
em Publishing Network for Geoscientific
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
Data on glacial erosion have been compiled and synthesised using a wide range of sediment budget and sediment yield studies from the Svalbard-Barents Sea region. The data include studies ranging in timescale from 1 to 10**6 yr, and in size of drainage basin from 101 to 105 km**2. They show a clear dependence of sediment yield on the mode of glacierization. Polar glaciers erode at rates comparable to those found in Arctic fluvial basins, or about 40 t/km**-2/ yr or 0.02 mm/yr. In contrast, rates of erosion by polythermal glaciers are 800-1000 t/km**2/ yr (or ca 0.3-0.4 mm/yr), while rates from fast-flowing glaciers are slightly more than twice this: 2100 t/km**2/yr (or 1 mm/yr). Similar rates are also found for large glacierized basins like those in the southwestern parts of the Barents Sea. In contrast to the situation in fluvial basins, in which sediment yield typically decreases with increasing basin size, the tendency in glacierized basins is for erosion to be independent of basin size. In studies of sediment yield from glaciers it is sometimes difficult to distinguish between material actually dislodged from the bedrock by glaciers and material dislodged by other processes in interglacial times and simply transported to a depocenter by a glacier. Our data suggest that pulses of sediment resulting from advance of a glacier over previously-dislodged material last on the order of 10**3 yr, and result in inferred erosion rates that are approximately 25% higher than long-term average rates of glacial erosion. The maximum sediment fluxes from the large Storfjorden and Bear Island drainage basins occurred in mid-Pleistocene. The onset of this period of high sediment yield coincided with the onset of the 100 kyr glacial cycle. We presume that this was the beginning of a period of increased glacial activity, but one in which glaciers still advanced and retreated frequently. During the last two to four 100 kyr cycles, however, sediment yields appear to have decreased. This decrease may be the result of the submergence of the Barents Sea. Glacier erosion would be much higher for a subaerial Barents Sea setting than it would be for a present day subsea Barents Sea. A classical question in Quaternary Geology is whether glaciers are more erosive than rivers. We surmise that if factors such as the lithology and the available potential energy (mgh) of the precipitation falling at a given altitude, whether in liquid or solid form, are held constant, then glaciers are vastly more effective agents of erosion than rivers.
Resumo:
A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.
Resumo:
Ocean acidification has the potential to affect growth and calcification of benthic marine invertebrates, particularly during their early life history. We exposed field-collected juveniles of Asterias rubens from Kiel Fjord (western Baltic Sea) to 3 seawater CO2 partial pressure (pCO2) levels (ranging from around 650 to 3500 µatm) in a long-term (39 wk) and a short-term (6 wk) experiment. In both experiments, survival and calcification were not affected by elevated pCO2. However, feeding rates decreased strongly with increasing pCO2, while aerobic metabolism and NH4+ excretion were not significantly affected by CO2 exposure. Consequently, high pCO2 reduced the scope for growth in A. rubens. Growth rates decreased substantially with increasing pCO2 and were reduced even at pCO2 levels occurring in the habitat today (e.g. during upwelling events). Sea stars were not able to acclimate to higher pCO2, and growth performance did not recover during the long-term experiment. Therefore, the top-down control exerted by this keystone species may be diminished during periods of high environmental pCO2 that already occur occasionally and will be even higher in the future. However, some individuals were able to grow at high rates even at high pCO2, indicating potential for rapid adaption. The selection of adapted specimens of A. rubens in this seasonally acidified habitat may lead to higher CO2 tolerance in adult sea stars of this population compared to the juvenile stage. Future studies need to address the synergistic effects of multiple stressors such as acidification, warming and reduced salinity, which will simultaneously impact the performance of sea stars in this habitat.