2 resultados para POLLUTION HISTORY
em Publishing Network for Geoscientific
Resumo:
A high-resolution, 8000 year-long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans-Pacific lead (Pb) pollution by ca. 1730, and a >10-fold increase in Pb concentration (1981-1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970-1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans-Pacific transport efficiency signal related to the strength of the Aleutian Low.
Resumo:
Lead isotopic compositions and Pb and Ba concentrations have been measured in ice cores from Law Dome, East Antarctica, covering the past 6500 years. 'Natural' background concentrations of Pb (ab. 0.4 pg/g) and Ba (ab. 1.3 pg/g) are observed until 1884 AD, after which increased Pb concentrations and lowered 206Pb/207Pb ratios indicate the influence of anthropogenic Pb. The isotopic composition of 'natural' Pb varies within the range 206Pb/207Pb=1.20-1.25 and 208Pb/207Pb=2.46-2.50, with an average rock and soil dust Pb contribution of 8-12%. A major pollution event is observed at Law Dome between 1884 and 1908 AD, elevating the Pb concentration four-fold and changing 206Pb/207Pb ratios in the ice to ab. 1.12. Based on Pb isotopic systematics and Pb emission statistics, this is attributed to Pb mined at Broken Hill and smelted at Broken Hill and Port Pirie, Australia. Anthropogenic Pb inputs are at their greatest from 1900 to 1910 and from ab. 1960 to ab. 1980. During the 20th century, Ba concentrations are consistently higher than 'natural' levels and are attributed to increased dust production, suggesting the influence of climate change and/or changes in land coverage with vegetation.