8 resultados para PLASMA BIOCHEMICAL ANALYSIS
em Publishing Network for Geoscientific
Resumo:
Seasonality of biomarker baseline levels were studied in polar cod (Boreogadus saida), caught in Kongsfjorden, Svalbard, in April, July, September and December, 2006-2007. Physiological parameters (condition factor, gonado- and hepato-somatic indexes, energy reserves, potential metabolic activity and antifreeze activity) in polar cod were used to interpret the seasonality of potential biomarkers. The highest levels of ethoxyresorufin-O-deethylase (EROD) activity occurred concomitantly with the highest potential metabolic activity in July due to e.g. intense feeding. During pre-spawning, EROD showed significant inhibition and gender differences. Hence, its potential use in environmental monitoring should imply gender differentiation at least during this period. Glutathione S-transferase and catalase activities were stable from April to September, but changed in December suggesting a link to low biological activity. Knowledge of the biomarker baseline levels and their seasonal trends in polar cod is essential for a trustworthy interpretation of forthcoming toxicity data and environmental monitoring in the Arctic.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs Gamma-A nifH genes abundance, computed from a collection of source data sets.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present collection presents the original data sets used to compile Global distributions of diazotrophs abundance, biomass and nitrogen fixation rates
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs abundance and biomass, computed from a collection of source data sets.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs nitrogen fixation rates, computed from a collection of source data sets.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. This is a gridded data product about diazotrophic organisms . There are 6 variables. Each variable is gridded on a dimension of 360 (longitude) * 180 (latitude) * 33 (depth) * 12 (month). The first group of 3 variables are: (1) number of biomass observations, (2) biomass, and (3) special nifH-gene-based biomass. The second group of 3 variables is same as the first group except that it only grids non-zero data. We have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling more than 11,000 direct field measurements including 3 sub-databases: (1) nitrogen fixation rates, (2) cyanobacterial diazotroph abundances from cell counts and (3) cyanobacterial diazotroph abundances from qPCR assays targeting nifH genes. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. Data are assigned to 3 groups including Trichodesmium, unicellular diazotrophic cyanobacteria (group A, B and C when applicable) and heterocystous cyanobacteria (Richelia and Calothrix). Total nitrogen fixation rates and diazotrophic biomass are calculated by summing the values from all the groups. Some of nitrogen fixation rates are whole seawater measurements and are used as total nitrogen fixation rates. Both volumetric and depth-integrated values were reported. Depth-integrated values are also calculated for those vertical profiles with values at 3 or more depths.
Resumo:
The physiological and molecular responses of ripe fruit to wounding were evaluated in two peach (Prunus persica) varieties ('Glohaven', GH, melting and 'BigTop', BT, slow melting nectarine) by comparing mesocarp samples from wedges (as in minimal processing) and whole fruit as the control. Slight differences between the two varieties were detected in terms of ethylene production, whereas total phenol and flavonoid concentrations, and PPO and POD enzyme activities showed a general increase in wounded GH but not in BT. This was associated with the better appearance of the BT wedges at the end of the experimental period (72 h). Microarray (genome-wide ?PEACH3.0) analysis revealed that a total number of 2218 genes were differentially expressed (p < 0.01, log2 fold change expression ratio >1 or <-1) in GH 24 h after wounding compared to the control. This number was much lower (1208) in BT. According to the enrichment analysis, cell wall, plasma membrane, response to stress, secondary metabolic processes, oxygen binding were the GO categories over-represented among the GH up-regulated genes, whereas plasma membrane and response to endogenous stimulus were the categories over-represented among the down-regulated genes. Only 32 genes showed a common expression trend in the two varieties 24 h after wounding, whereas a total of 512 genes (with highly represented transcription factors), displayed opposite behavior. Quantitative RT-PCR analysis confirmed the microarray data for 18 out of a total of 20 genes selected. Specific WRKY, AP2/ERF and HSP20 genes were markedly up-regulated in wounded GH, indicating the activation of regulatory and signaling mechanisms probably related to different hormone categories. Compared to BT, the expression of specific genes involved in phenylpropanoid and triterpenoid biosynthetic pathways showed a more pronounced induction in GH, highlighting the difference between the two peach varieties in terms of molecular responses to wounding in the mesocarp tissue.
Resumo:
Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen beta chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1 gamma, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.