458 resultados para PC-3
em Publishing Network for Geoscientific
Resumo:
The Hakon Mosby Mud Volcano is a highly active methane seep hosting different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on in situ measurements of methane fluxes to and from these different habitats, in comparison to benthic methane and oxygen consumption rates. By quantifying in situ oxygen, methane, and sulfide fluxes in different habitats, a spatial budget covering areas of 10-1000 -m diameter was established. The range of dissolved methane efflux (770-2 mmol m-2 d-1) from the center to the outer rim was associated with a decrease in temperature gradients from 46°C to < 1°C m-1, indicating that spatial variations in fluid flow control the distribution of benthic habitats and activities. Accordingly, total oxygen uptake (TOU) varied between the different habitats by one order of magnitude from 15 mmol m-2 d-1 to 161 mmol m-2 d-1. High fluid flow rates appeared to suppress benthic activities by limiting the availability of electron acceptors. Accordingly, the highest TOU was associated with the lowest fluid flow and methane efflux. This was most likely due to the aerobic oxidation of methane, which may be more relevant as a sink for methane as previously considered in submarine ecosystems.
Resumo:
We have investigated if in a cold seep methane or sulfide is used for chemosynthetic primary production and if significant amounts of the sulfide produced by anaerobic oxidation of methane are oxidized geochemically and hence are not available for chemosynthetic production. Geochemically controlled redox reactions and biological turnover were compared in different habitats of the Håkon Mosby Mud Volcano. The center of the mud volcano is characterized by the highest fluid flow, and most primary production by the microbial community depends on oxidation of methane. The small amount of sulfide produced is oxidized geochemically with oxygen or is precipitated with dissolved iron. In the medium flow peripheral Beggiatoa habitat sulfide is largely oxidized biologically. The oxygen and nitrate supply is high enough that Beggiatoa can oxidize the sulfide completely, and chemical sulfide oxidation or precipitation is not important. An internally stored nitrate reservoir with average concentrations of 110 mmol L-1 enables the Beggiatoa to oxidize sulfide anaerobically. The pH profile indicates sequential sulfide oxidation with elemental sulfur as intermediate. Gray thiotrophic mats associated with perturbed sediments showed a high heterogeneity in sulfate turnover and high sulfide fluxes, balanced by the opposing oxygen and nitrate fluxes so that biological oxidation dominates over geochemical sulfide removal processes. The three habitats indicate substantial small-scale variability in carbon fixation pathways either through direct biological use of methane or through indirect carbon fixation of methane-derived carbon dioxide by chemolithotrophic sulfide oxidation.
Resumo:
Particles sinking out of the euphotic zone are important vehicles of carbon export from the surface ocean. Most of the particles produce heavier aggregates by coagulating with each other before they sink. We implemented an aggregation model into the biogeochemical model of Regional Oceanic Modelling System (ROMS) to simulate the distribution of particles in the water column and their downward transport in the Northwest African upwelling region. Accompanying settling chamber, sediment trap and particle camera measurements provide data for model validation. In situ aggregate settling velocities measured by the settling chamber were around 55 m d**-1. Aggregate sizes recorded by the particle camera hardly exceeded 1 mm. The model is based on a continuous size spectrum of aggregates, characterised by the prognostic aggregate mass and aggregate number concentration. Phytoplankton and detritus make up the aggregation pool, which has an averaged, prognostic and size dependent sinking. Model experiments were performed with dense and porous approximations of aggregates with varying maximum aggregate size and stickiness as well as with the inclusion of a disaggregation term. Similar surface productivity in all experiments has been generated in order to find the best combination of parameters that produce measured deep water fluxes. Although the experiments failed to represent surface particle number spectra, in the deep water some of them gave very similar slope and spectrum range as the particle camera observations. Particle fluxes at the mesotrophic sediment trap site off Cape Blanc (CB) have been successfully reproduced by the porous experiment with disaggregation term when particle remineralisation rate was 0.2 d**-1. The aggregation-disaggregation model improves the prediction capability of the original biogeochemical model significantly by giving much better estimates of fluxes for both upper and lower trap. The results also point to the need for more studies to enhance our knowledge on particle decay and its variation and to the role that stickiness play in the distribution of vertical fluxes.