70 resultados para PARTITIONING
em Publishing Network for Geoscientific
Resumo:
Carbon uptake and partitioning of two globally abundant diatom species, Thalassiosira weissflogii and Dactyliosolen fragilissimus, was investigated in batch culture experiments under four conditions: ambient (15°C, 400 µatm), high CO2 (15°C, 1000 µatm), high temperature (20°C, 400 µatm), and combined (20°C, 1000 µatm). The experiments were run from exponential growth into the stationary phase (six days after nitrogen depletion), allowing us to track biogeochemical dynamics analogous to bloom situations in the ocean. Elevated CO2 had a fertilizing effect and enhanced uptake of dissolved inorganic carbon (DIC) by about 8% for T. weissflogii and by up to 39% for D. fragilissimus. This was also reflected in higher cell numbers, build-up of particulate and dissolved organic matter, and transparent exopolymer particles. The CO2 effects were most prominent in the stationary phase when nitrogen was depleted and CO2(aq) concentrations were low. This indicates that diatoms in the high CO2 treatments could take up more DIC until CO2 concentrations in seawater became so low that carbon limitation occurs. These results suggest that, contrary to common assumptions, diatoms could be highly sensitive to ongoing changes in oceanic carbonate chemistry, particularly under nutrient limitation. Warming from 15 to 20 °C had a stimulating effect on one species but acted as a stressor on the other species, highlighting the importance of species-specific physiological optima and temperature ranges in the response to ocean warming. Overall, these sensitivities to CO2 and temperature could have profound impacts on diatoms blooms and the biological pump.
Resumo:
A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
Resumo:
Seasonal patterns in the partitioning of phytoplankton carbon during receding sea ice conditions in the eastern Bering Sea water column are presented using rates of 14C net primary productivity (NPP), phototrophic plankton carbon content, and POC export fluxes from shelf and slope waters in the spring (March 30-May 6) and summer (July 3-30) of 2008. At ice-covered and marginal ice zone (MIZ) stations on the inner and middle shelf in spring, NPP averaged 76 ± 93 mmol C/m**2/d, and in ice-free waters on the outer shelf NPP averaged 102 ± 137 mmol C/m**2/d. In summer, rates of NPP were more uniform across the entire shelf and averaged 43 ± 23 mmol C/m**2/d over the entire shelf. A concomitant shift was observed in the phototrophic pico-, nano-, and microplankton community in the chlorophyll maximum, from a diatom dominated system (80 ± 12% autotrophic C) in ice covered and MIZ waters in spring, to a microflagellate dominated system (71 ± 31% autotrophic C) in summer. Sediment trap POC fluxes near the 1% PAR depth in ice-free slope waters increased by 70% from spring to summer, from 10 ± 7 mmol C/m**2/d to 17 ± 5 mmol C/m**2/d, respectively. Over the shelf, under-ice trap fluxes at 20 m were higher, averaging 43 ± 17 mmol C/m**2/d POC export over the shelf and slope estimated from 234Th deficits averaged 11 ± 5 mmol C/m**2/d in spring and 10 ± 2 mmol C/m**2/d in summer. Average e-ratios calculated on a station-by-station basis decreased by ~ 30% from spring to summer, from 0.46 ± 0.48 in ice-covered and MIZ waters, to 0.33 ± 0.26 in summer, though the high uncertainty prevents a statistical differentiation of these data.
Resumo:
Sediments from immediately above basalt basement and from between sections of basalt recovered from Deep Sea Drilling Project Legs 5 and 63 were analyzed by atomic absorption spectroscopy for Mg, Al, Si, Ca, Mn, Fe, Co, Ni, Cu, Zn, and Ba. All of these sediments showed enrichment in Fe and Mn over values typical of detritus supplied to the northeastern Pacific Ocean. X-ray diffractometry and differential chemical leaching indicate that up to 50% of the sediment, by weight, is in amorphous phases and that these phases are rich in Mn, Co, Cu, Ni, and Zn. Multivariate statistical analysis and normative partitioning of the chemical data indicate that much of the excess Fe and other transition elements in the sediment originate from hydrothermal sources.
Resumo:
The variability in microbial communities (abundance and biomass), bacterial production and ectoaminopeptidase activity, particulate and dissolved organic carbon (POC, DOC), and particulate and dissolved lipids was examined in spring 1995 in the northwestern Mediterranean, where a transition from the end of a bloom to pre-oligotrophic conditions was observed. Four time series of 36 h each and 4 h sampling intervals were performed at 5 m and at the chlorophyll maximum (30 m) between 11 and 31 May. Simultaneous measurements of pigments, abundance of hetero- and autotrophic flagellates, bacteria and POC enabled the estimation of living POC (defined as autotrophic-C plus heterotrophic-C biomass), and thus the detrital organic carbon. During the first 2 time series (11 to 15 May), the bacterial-C biomass was higher than the autotrophic-C biomass at 5 m (ratio 1.4 and 1.7), whereas the opposite trend was observed in the chlorophyll peak (ratio 0.7 for the first cycle). However, at the end of May, autotrophic-C biomass was equivalent to bacterial-C biomass at both depths studied. The detrital pool remained a more or less constant fraction of the POC (52, 53 and 47% on 11-12 May, 14-15 May and 30-31 May) at the chlorophyll peak, whereas it decreased significantly with time (62 to 53%) at 5 m. Relationships between bacterial activities and evolution of available resources were not systematically evidenced from our 36 h diel cycle data. Nevertheless, at the monthly scale, comparison of bacterial carbon demand (BCD) to potential carbon resources (detrital POC and DOC) showed that bacteria fed differently on the various pools. From ectoaminopeptidase turnover rates and detrital POC, the potential hydrolysis rate of detritus was calculated. Depending on the choice of conversion factors for bacterial production and estimates of hydrolysis turnover rates, it was shown that bacterial hydrolysis of detritus could be one of the DOC accumulation sources. We observed that the percentage of BCD supplied by detrital POC hydrolysis increased in the surface and decreased in the chlorophyll peak. An index of lipid degradation in POC, the lipolysis index, increased during the month at 5 m, also indicating a higher hydrolysis of POC. The opposite trend was observed in the chlorophyll maximum layer. The selective decrease in dissolved lipids in DOC in the chlorophyll maximum layer, particularly free fatty acids, also suggests that bacteria utilized increased fractions of carbon sources from the DOC. We concluded that partitioning between DOC and detritus as resources for bacteria can change during the rapid transition period from mesotrophy to oligotrophy in the northwestern Mediterranean.
Resumo:
To increase our understanding of the mechanisms that control the distribution of Al and Ti within marine sediment, we performed sequential extractions targeting the chemical signatures of the loosely bound, exchangeable, carbonate, oxide, organic, opal, and residual fraction of sediment from a carbonate-dominated regime (equatorial Pacific) and from a mixed opal-terrigenous regime (West Antarctic Peninsula). We observe a systematic partitioning of Al and Ti between sediment phases that is related to bulk Al/Ti. We show that, where we can quantify an Al(excess) component, the dissolved Al is preferentially affiliated with the oxide fraction, resulting in Al/Ti molar ratios of 500-3000. This is interpreted as the result of surface complexation in the water column of dissolved Al onto oxyhydroxides. We also observe a previously undetected Ti(excess) with as much as 80% of the total Ti in the organic fraction, which is most likely a function of metal-organic colloidal removal from the water column. In samples where the excess metals are obscured by the detrital load, the Al and Ti are almost exclusively found in the residual phase. This argues for the paired removal of Al (preferentially by the oxide component) and Ti (preferentially by the organic component) from the water column by settling particulate matter. This research builds upon earlier work that shows changes in the bulk ratio of Al to Ti in carbonate sediment from the central-equatorial Pacific that coincide with changes in the sedimentary bulk accumulation rate (BAR). The ratios that are observed are as much as three times higher than typical shale values, and were interpreted as the result of scavenging of dissolved Al onto particles settling in the water column. Because this non-terrigenous Al(excess) accounts for up to 50% of the total sedimentary Al inventory and correlates best with BAR, the bulk Al/Ti may be a sensitive tracer of particle flux and, therefore, export production. Because we show that the excess metals are the result of scavenging processes, the bulk Al/Ti may be considered a sensitive proxy for this region.
Resumo:
The Baltic Sea is a semi-enclosed sea with a steady salinity gradient (3 per mil-30 per mil). Organisms have adapted to such low salinities, but are suspected to be more susceptible to stress. Within the frame of the integrated environmental monitoring BONUS + project "BEAST" the applicability of immune responses of the blue mussel was investigated in Danish coastal waters. The sampling sites were characterised by a salinity range (11-19 per mil) and different mixtures of contaminants (metals, PAHs and POPs), according to chemical analysis of mussel tissues. Variation partitioning (redundancy analysis) was applied to decompose salinity and contamination effects. The results indicated that cellular immune responses (total and differential haemocyte count, phagocytic activity and apoptosis) were mainly influenced by contaminants, whereas humoral factors (haemolytic activity) were mainly impacted by salinity. Hence, cellular immune functions may be suitable as biomarkers in monitoring programmes for the Baltic Sea and other geographic regions with salinity variances of the studied range.
Resumo:
We examine the possibility that glacial increase in the areal extent of reducing sediments might have changed the oceanic Cd inventory, thereby decoupling Cd from PO4. We suggest that the precipitation of Cd-sulfide in suboxic sediments is the single largest sink in the oceanic Cd budget and that the accumulation of authigenic Cd and U is tightly coupled to the organic carbon flux into the seafloor. Sediments from the Subantarctic Ocean and the Cape Basin (South Atlantic), where oxic conditions currently prevail, show high accumulation rates of authigenic Cd and U during glacial intervals associated with increased accumulation of organic carbon. These elemental enrichments attest to more reducing conditions in glacial sediments in response to an increased flux of organic carbon. A third core, overlain by Circumpolar Deep Water (CPDW) as are the other two cores but located south of the Antarctic Polar Front, shows an approximately inverse pattern to the Subantarctic record. The contrasting patterns to the north and south of the Antarctic Polar Front suggest that higher accumulation rates of Cd and U in Subantarctic sediments were driven primarily by increased productivity. This proposal is consistent with the hypothesis of glacial stage northward migration of the Antarctic Polar Front and its associated belt of high siliceous productivity. However, the increase in authigenic Cd and U glacial accumulation rates is higher than expected simply from a northward shift of the polar fronts, suggesting greater partitioning of organic carbon into the sediments during glacial intervals. Lower oxygen content of CPDW and higher organic carbon to biogenic silica rain rate ratio during glacial stages are possible causes. Higher glacial productivity in the Cape Basin record very likely reflects enhanced coastal up-welling in response to increased wind speeds. We suggest that higher productivity might have doubled the areal extent of suboxic sediments during the last glacial maximum. However, our calculations suggest low sensitivity of seawater Cd concentrations to glacial doubling of the extent of reducing sediments. The model suggests that during the last 250 kyr seawater Cd concentrations fluctuated only slightly, between high levels (about 0.66 nmol/kg) on glacial initiations and reaching lowest values (about 0.57 nmol/kg) during glacial maxima. The estimated 5% lower Cd content at the last glacial maximum relative to modern levels (0.60 nmol/kg) cannot explain the discordance between Cd and delta13C, such as observed in the Southern Ocean. This low sensitivity is consistent with foraminiferal data, suggesting minimal change in the glacial Cd mean oceanic content.
Resumo:
Sexual segregation in habitat use occurs in a number of animal species, including southern elephant seals, where differences in migration localities and dive behaviour between sexes have been recorded. Due to the extreme sexual size dimorphism exhibited by southern elephant seals, it is unclear whether observed differences in dive behaviour are due to increased physiological capacity of males, compared to females, or differences in activity budgets and foraging behaviour. Here we use a mixed-effects modelling approach to investigate the effects of sex, size, age and individual variation on a number of dive parameters measured on southern elephant seals from Marion Island. Although individual variation accounted for substantial portions of total model variance for many response variables, differences in maximum and targeted dive depths were always influenced by sex, and only partly by body length. Conversely, dive durations were always influenced by body length, while sex was not identified as a significant influence. These results support hypotheses that physiological capability associated with body size is a limiting factor on dive durations. However, differences in vertical depth use appear to be the result of differences in forage selection between sexes, rather than a by-product of the size dimorphism displayed by this species. This provides further support for resource partitioning and possible avoidance of inter-sexual competition in southern elephant seals.
Resumo:
Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.
Resumo:
Despite the key importance of altered oceanic mantle as a repository and carrier of light elements (B, Li, and Be) to depth, its inventory of these elements has hardly been explored and quantified. In order to constrain the systematics and budget of these elements we have studied samples of highly serpentinized (>50%) spinel harzburgite drilled at the Mid-Atlantic Ridge (Fifteen-Twenty Fracture zone, ODP Leg 209, Sites 1272A and 1274A). In-situ analysis by secondary ion mass spectrometry reveals that the B, Li and Be contents of mantle minerals (olivine, orthopyroxene, and clinopyroxene) remain unchanged during serpentinization. B and Li abundances largely correspond to those of unaltered mantle minerals whereas Be is close to the detection limit. The Li contents of clinopyroxene are slightly higher (0.44-2.8 µg/g) compared to unaltered mantle clinopyroxene, and olivine and clinopyroxene show an inverse Li partitioning compared to literature data. These findings along with textural observations and major element composition obtained from microprobe analysis suggest reaction of the peridotites with a mafic silicate melt before serpentinization. Serpentine minerals are enriched in B (most values between 10 and 100 µg/g), depleted in Li (most values below 1 µg/g) compared to the primary phases, with considerable variation within and between samples. Be is at the detection limit. Analysis of whole rock samples by prompt gamma activation shows that serpentinization tends to increase B (10.4-65.0 µg/g), H2O and Cl contents and to lower Li contents (0.07-3.37 µg/g) of peridotites, implying that-contrary to alteration of oceanic crust-B is fractionated from Li and that the B and Li inventory should depend essentially on rock-water ratios. Based on our results and on literature data, we calculate the inventory of B and Li contained in the oceanic lithosphere, and its partitioning between crust and mantle as a function of plate characteristics. We model four cases, an ODP Leg 209-type lithosphere with almost no igneous crust, and a Semail-type lithosphere with a thick igneous crust, both at 1 and 75 Ma, respectively. The results show that the Li contents of the oceanic lithosphere are highly variable (17-307 kg in a column of 1 m * 1 m * thickness of the lithosphere (kg/col)). They are controlled by the primary mantle phases and by altered crust, whereas the B contents (25-904 kg/col) depend entirely on serpentinization. In all cases, large quantities of B reside in the uppermost part of the plate and could hence be easily liberated during slab dehydration. The most prominent input of Li into subduction zones is to be expected from Semail-type lithosphere because most of the Li is stored at shallow levels in the plate. Subducting an ODP Leg 209-type lithosphere would mean only very little Li contribution from the slab. Serpentinized mantle thus plays an important role in B recycling in subduction zones, but it is of lesser importance for Li.
Resumo:
Sr isotope analyses have been conducted on anhydrite samples from the TAG (Trans-Atlantic Geotraverse) active hydrothermal mound (26°08?N, Mid-Atlantic Ridge) that have previously been shown to exhibit two distinct patterns of REE behavior when normalized to TAG end-member hydrothermal fluid. Despite differences in REE patterns, the Sr isotope data indicate that all the anhydrites precipitated from fluids with a similar range of hydrothermal fluid and seawater components, and all but one were seawater-dominated (52%-75%). Speciation calculations using the EQ3/6 software package for geochemical modeling of aqueous systems suggest that the REE complexation behavior in different fluid mixing scenarios can explain the variations in the REE patterns. Anhydrites that exhibit relatively flat REE patterns [(La_bs)/(Yb_bs) = 0.8-2.0; subscript bs indicates normalization to end-member black smoker hydrothermal fluid] and a small or no Eu anomaly [(Eu_bs)/(Eu*_bs) = 0.8-2.0] are inferred to have precipitated from mixes of end-member hydrothermal fluid and cold seawater. REE complexes with hard ligands (e.g., fluoride and chloride) are less stable at low temperatures and trivalent Eu has an ionic radius similar to that of Ca2+ and the other REE, and so they behave coherently. In contrast, anhydrites that exhibit slight LREE-depletion [(La_bs)/(Yb_bs) = 0.4-1.4] and a distinct negative anomaly [(Eu_bs)/(Eu*_bs) = 0.2-0.8] are inferred to have precipitated from mixes of end-member hydrothermal fluid and conductively heated seawater. The LREE depletion results from the presence of very stable LREE chloro-complexes that effectively limit the availability of the LREE for partitioning into anhydrite. Above 250°C, Eu is present only in divalent form as chloride complexes, and discrimination against Eu2+ is likely due to both the mismatch in ionic radii between Eu2+ and Ca2+, and the strong chloro-complexation of divalent Eu which promotes stability in the fluid and inhibits partitioning of Eu2+ into precipitating anhydrite. These variations in REE behavior attest to rapid fluctuations in thermal regime, fluid flow and mixing in the subsurface of the TAG mound that give rise to heterogeneity in the formation conditions of individual anhydrite crystals.
Resumo:
The 720 m of igneous basement that was penetrated at Site 786 of Ocean Drilling Program Leg 125 consists of boninite-series volcanics. Bronzite andesites dominate the lithology and primitive magmas of high-Ca, intermediate-Ca, and low-Ca boninite are present in subordinate amounts. Sparsely phyric boninites typically contain olivine and orthopyroxene phenocrysts with Mg numbers [= Mg/(Mg + Fe) in moles] between 86% and 87%. Their high whole-rock Mg numbers, and the absence of zonation in the phenocrysts, imply equilibration at temperatures probably between 1200° and 1250°C, and 20° to 50°C below their liquidus. Equilibrium olivine and orthopyroxene have identical Mg numbers, and Mg/Fe partitioning between these minerals and the melt thus can be described with a single Kd. The invariably phenocryst-rich bronzite andesites contain Plagioclase that has spectacular zoning and mafic phases that can be as magnesian as those of the boninite parent. The most evolved melts are rhyolites with hypersthene, Plagioclase (An50), and magnetite. Eruption temperatures for the rhyolites are estimated at about 1000°C. Some magmas contain ferroactinolite in the groundmass, which is most likely a secondary, low-temperature phase. The locally large contrasts in degree of alteration are consistent with multiple episodes of magmatic activity. However, all igneous events produced boninite volcanics. Only the first, the edifice-building episode, gave rise to differentiated magmas. Differentiation of parental boninites took place by limited fractional crystallization, producing bronzite andesites. The erupted andesites, dacites and rhyolites are filter pressed extracts from these bronzite andesite magmas, which, as a result, have accumulated crystals. Subsequent younger igneous events produced high-Ca and intermediate-Ca boninites which intruded as dikes and sills throughout the basement sequence. The mineralogy of the dikes and sills reflects variable degrees of subliquidus cooling of the magma before emplacement.