71 resultados para PACS 42.55.Wd · 42.55.Xi

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estimates of summer sea surface temperatures (SSSTs) derived from planktic foraminiferal associations using the Modern Analog Technique and combined with isotopic analyses and determination of ice-rafted debris, mirror the Pleistocene evolution of the planktic Subantarctic surface waters in the Atlantic Ocean. The SSSTs indicate that the isotherms that define the modern polar front zone and Subantarctic front, were located at more northerly latitudes (up to 7°) during most of the investigated period, which covers the past 550 kyr. Exceptions are during climatic optima in the early Holocene, at marine isotope stages (MIS) 5.5, 7.1, 7.5, 9.3, and presumably during MIS 11.3 when SSSTs exceeded modern values by 1 -5°C. The close similarity between the SSST and the Vostok temperature indicates strong regional temperature correlation. Both records show that MIS 9.3 was the warmest period during the last 420 kyr whereas SSSTs obtained for MIS 11.3 are overestimated due to strong carbonate dissolution. Spectral analysis corroborates that the initiation of warming in southern high latitudes heralds the start of deglaciation on the Northern Hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Br/Cl, Li/Cl and B/Cl ratios and boron isotope compositions of hypersaline pore fluids from DSDP Sites 372 and 374 were measured in an attempt to evaluate the origin of the brines. In Site 374 the relationships between the Cl concentrations (up to 5000 mM) and Br/Cl (~0.012), Na/Cl (as low as 0.1), B/Cl (0.0025), and d11B values (43-55?) of the deep pore water between 380 and 405 mbsf, located within the Messinian sediments, reflect remnants of ~65-fold evaporated sea water. The original evaporated sea water was modified by: (1) dilution with overlying or less saline water by about 30%; and (2) slight dissolution of NaCl evaporites. The variations in d11B show a continuous increase in d11B values with depth in Site 374, up to 66.7? at a depth of 300 mbsf (Upper Pliocene marl sediments). The conspicuous 11B enrichment trend is consistent with elemental boron depletion, which was calculated from the expected boron concentrations of evaporated sea water with corresponding Br/Cl and Na/Cl ratios. Li/Cl variations also show a depletion of Li relative to evaporated sea water. The apparent depletions of B and Li, as well as the 11B enrichment, reflect uptake of these elements by clay minerals at low water/sediment ratios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microprobe mineral compositions of olivine, plagioclase, clinopyroxene, chrome spinel, ilmenite, and titanomagnetite are presented for 7 samples from 4 flows of hawaiite and one flow of tholeiitic basalt from Hole 430A at Ojin Seamount, 4 samples from 3 flows of alkalic basalt from Hole 432A at Nintoku Seamount, and 29 samples from 2 flows of alkalic basalt and 24 flows of tholeiitic basalt from Holes 433A, 433B, and 433C at Suiko Seamount. The four hawaiite flows from Hole 430A on Ojin Seamount have nearly identical mineralogy. The plagioclase phenocrysts and calculated equilibrium olivine appear to have crystallized at about 1175°C; the groundmass plagioclase crystallized from about 1135° to 1010°C; and the Fe-Ti oxides equilibrated at temperatures from 1000°C to 720°C under oxygen fugacities of 10**-11 to 10**-17. The single tholeiitic flow contains glomerocrysts of plagioclase (An80 to An65) and clinopyroxene (Wo43En46Fsn to Wo42En45Fs13). The plagioclase phenocrysts give calculated temperatures as high as 1400°C, indicating that they were not equilibrated with a magma having the bulk rock composition. The plagioclase groundmass crystallized at 1120° to 1070°C, and the Fe-Ti oxides equilibrated at 1070° to 930°C under oxygen fugacities of 10**-10 to 10**-12. Using mineral compositions of Hawaiian basalts as a guide, we infer that the hawaiite flows were erupted during the post-caldera alkalic eruptive stage and the tholeiite was erupted during the shield-building or caldera collapse stage. The three alkalic basalt flows from Hole 432A on Nintoku Seamount have similar mineralogy, although Flow Units 1 and 2 contain much more abundant plagioclase phenocrysts. The groundmass plagioclase crystallized at temperatures between 1175° and 1000°C. The olivine and plagioclase phenocrysts do not appear to be in equilibrium with the enclosing magmas. The mineral compositions suggest that these samples are intermediate between alkalic basalt and hawaiite; they probably erupted during the post-caldera alkalic stage of eruption. The two analyzed alkalic basalt flows are the two youngest flows recovered at Holes 433A, 433B, and 433C. Flow Unit 1 contains abundant sector-zoned clinopyroxene, and Flow Unit 2 contains rare kink-banded olivine xenocrysts. The plagioclase phenocrysts yield calculated temperatures of 1440° to 1250°C, indicating that they are probably not cognate. Calculated-equilibrium olivine indicates crystallization of olivine at about 1170°C. The Fe-Ti oxides equilibrated at temperatures of 1140° to 870°C under oxygen fugacities of 10**-9 to 10**-14. The groundmass plagioclase crystallized at temperatures of 1178° to 1035 °C. The mineral compositions indicate that these alkalic basalts erupted during the post-caldera alkalic eruptive stage. The 24 analyzed tholeiitic basalts are subdivided on the basis of phenocryst abundances into olivine tholeiites, plagioclase tholeiites, and tholeiites. The crystallization sequence appears to have been chrome spinel, olivine, plagioclase, and clinopyroxene as phenocryst phases, followed by and overlapping with groundmass crystallization of plagioclase (1180° to 920°C), clinopyroxene, and Fe-Ti oxides (1140° to 670°C). At least three flows contain pigeonite. The mineral compositions indicate that all the samples from Flow Unit 4 downward are tholeiitic basalts, although Flow Unit 64 has mineral compositions transitional to those in alkalic basalts.