103 resultados para Oxygen-binding-properties

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies exist reporting on long-term exposure of crustaceans to hypercapnia. We exposed juvenile South African rock lobsters, Jasus lalandii, to hypercapnic conditions of pH 7.3 for 28 weeks and subsequently analysed changes in the extracellular fluid (haemolymph). Results revealed, for the first time, adjustments in the haemolymph of a palinurid crustacean during chronic hypercapnic exposure: 1) acid-base balance was adjusted and sustained by increased bicarbonate and 2) quantity and oxygen binding properties of haemocyanin changed. Compared with lobsters kept under normocapnic conditions (pH 8.0), during prolonged hypercapnia, juvenile lobsters increased bicarbonate buffering of haemolymph. This is necessary to provide optimum pH conditions for oxygen binding of haemocyanin and functioning of respiration in the presence of a strong Bohr Effect. Furthermore, modification of the intrinsic structure of the haemocyanin molecule, and not the presence of molecular modulators, seems to improve oxygen affinity under conditions of elevated pCO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen equilibrium curves have been widely used to understand oxygen transport in numerous organisms. A major challenge has been to monitor oxygen binding characteristics and concomitant pH changes as they occur in vivo, in limited sample volumes. Here we report a technique allowing highly resolved and simultaneous monitoring of pH and blood pigment saturation in minute blood volumes. We equipped a gas diffusion chamber with a broad range fibre optic spectrophotometer and a micro-pH optode and recorded changes of pigment oxygenation along PO2 and pH gradients to test the setup. Oxygen binding parameters derived from measurements in only 15 µl of haemolymph from the cephalopod Octopus vulgaris showed low instrumental error (0.93%) and good agreement with published data. Broad range spectra, each resolving 2048 data points, provided detailed insight into the complex absorbance characteristics of diverse blood types. After consideration of photobleaching and intrinsic fluorescence, pH optodes yielded accurate recordings and resolved a sigmoidal shift of 0.03 pH units in response to changing PO2 from 0-21 kPa. Highly resolved continuous recordings along pH gradients conformed to stepwise measurements at low rates of pH changes. In this study we showed that a diffusion chamber upgraded with a broad range spectrophotometer and an optical pH sensor accurately characterizes oxygen binding with minimal sample consumption and manipulation. We conclude that the modified diffusion chamber is highly suitable for experimental biologists who demand high flexibility, detailed insight into oxygen binding as well as experimental and biological accuracy combined in a single set up.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Results: Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. Conclusions: This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physiological and molecular responses of ripe fruit to wounding were evaluated in two peach (Prunus persica) varieties ('Glohaven', GH, melting and 'BigTop', BT, slow melting nectarine) by comparing mesocarp samples from wedges (as in minimal processing) and whole fruit as the control. Slight differences between the two varieties were detected in terms of ethylene production, whereas total phenol and flavonoid concentrations, and PPO and POD enzyme activities showed a general increase in wounded GH but not in BT. This was associated with the better appearance of the BT wedges at the end of the experimental period (72 h). Microarray (genome-wide ?PEACH3.0) analysis revealed that a total number of 2218 genes were differentially expressed (p < 0.01, log2 fold change expression ratio >1 or <-1) in GH 24 h after wounding compared to the control. This number was much lower (1208) in BT. According to the enrichment analysis, cell wall, plasma membrane, response to stress, secondary metabolic processes, oxygen binding were the GO categories over-represented among the GH up-regulated genes, whereas plasma membrane and response to endogenous stimulus were the categories over-represented among the down-regulated genes. Only 32 genes showed a common expression trend in the two varieties 24 h after wounding, whereas a total of 512 genes (with highly represented transcription factors), displayed opposite behavior. Quantitative RT-PCR analysis confirmed the microarray data for 18 out of a total of 20 genes selected. Specific WRKY, AP2/ERF and HSP20 genes were markedly up-regulated in wounded GH, indicating the activation of regulatory and signaling mechanisms probably related to different hormone categories. Compared to BT, the expression of specific genes involved in phenylpropanoid and triterpenoid biosynthetic pathways showed a more pronounced induction in GH, highlighting the difference between the two peach varieties in terms of molecular responses to wounding in the mesocarp tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acidification of ocean surface waters by anthropogenic carbon dioxide (CO2) emissions is a currently developing scenario that warrants a broadening of research foci in the study of acid-base physiology. Recent studies working with environmentally relevant CO2 levels, indicate that some echinoderms and molluscs reduce metabolic rates, soft tissue growth and calcification during hypercapnic exposure. In contrast to all prior invertebrate species studied so far, growth trials with the cuttlefish Sepia officinalis found no indication of reduced growth or calcification performance during long-term exposure to 0.6 kPa CO2. It is hypothesized that the differing sensitivities to elevated seawater pCO2 could be explained by taxa specific differences in acid-base regulatory capacity. In this study, we examined the acid-base regulatory ability of S. officinalis in vivo, using a specially modified cannulation technique as well as 31P NMR spectroscopy. During acute exposure to 0.6 kPa CO2, S. officinalis rapidly increased its blood [HCO3] to 10.4 mM through active ion-transport processes, and partially compensated the hypercapnia induced respiratory acidosis. A minor decrease in intracellular pH (pHi) and stable intracellular phosphagen levels indicated efficient pHi regulation. We conclude that S. officinalis is not only an efficient acid-base regulator, but is also able to do so without disturbing metabolic equilibria in characteristic tissues or compromising aerobic capacities. The cuttlefish did not exhibit acute intolerance to hypercapnia that has been hypothesized for more active cephalopod species (squid). Even though blood pH (pHe) remained 0.18 pH units below control values, arterial O2 saturation was not compromised in S. officinalis because of the comparatively lower pH sensitivity of oxygen binding to its blood pigment. This raises questions concerning the potentially broad range of sensitivity to changes in acid-base status amongst invertebrates, as well as to the underlying mechanistic origins. Further studies are needed to better characterize the connection between acid-base status and animal fitness in various marine species.