656 resultados para Oxidation reduction reaction
em Publishing Network for Geoscientific
Resumo:
Carbon dioxide, ammonia, and reactive phosphate in the interstitial water of three sediment cores of the West African continental margin result from oxidation of sedimentary organic matter by bacterial sulfate reduction. The proposed model is a modification of one initially suggested by Richards (1965) for processes in anoxic waters: (CH2O)106 (NH3)8 (H3PO4) (0.7-0.2) + 53 SO4**2- =106 CO2 + 106 H20 + 8 NH3 + (0.7 - 0.2) H3PO4 + 53 S**2- The amount of reduced interstitial sulfate, the carbon-to-nitrogen-to-phosphorus atomic ratio of the sedimentary organic matter, as well as small amounts of carbon dioxide, which precipitated as interstitial calcium carbonate, are included in the general oxidation-reduction reaction. Preferential loss of nitrogen and phosphorus from organic matter close to the surface was recorded in both the interstitial water and sediment composition. It appeared that in deeper sections of the core organic carbon compounds were oxidized which were probably in an even lower oxidation state than that indicated by the proposed model. An estimated 2 % of the amount of organic matter still present was oxidized after it became incorporated into the sediment; whereas sulfide sulfur contents indicate that a much larger percentage (15-20%) seemed to have been subject to bacterial oxidation during the Pleistocene period, when a very thin oxidizing layer on the sediment allowed the above decomposition process to start relatively early favoured by almost fresh organic matter, and by almost unrestricted exchange of sulfate with the overlying water.
Resumo:
This report synthesizes all of the interstitial-water chemistry studies associated with the Kerguelen Plateau phase of ODP Leg 119. Sediments were cored at six sites (49°24'S to 59°36'S) in water depths ranging from 564 to 4082 m. A total of 77 interstitial-water samples was recovered as part of the routine sampling protocol. In addition, a novel, highresolution pore-water sampling program was tested during Leg 119 that enabled us to pinpoint reaction zones and extend our data base to deeper, drier levels that were heretofore inaccessible. Data collected include interstitial-water sodium, potassium, calcium, magnesium, pH, alkalinity, sulfate, ammonia, phosphate, aqueous silica, salinity, chloride, oxidation-reduction potentials, and sediment chemistry. The northern sector (Sites 736 and 737) is characterized by the highest sedimentation rates (up to 140 m/m.y.) and thermal gradients (70°-98°C/km) encountered on the Kerguelen Plateau during Leg 119. Site 737 represents the most reactive sediment column cored on the Kerguelen Plateau. Major cation fluxes at Site 737 are the strongest measured during Leg 119. High dissolved calcium concentrations (141.5 mM) were encountered near the bottom of Hole 737B. Elevated temperatures promote silica diagenesis and the alteration of volcanic material below 300 mbsf, and a diagenetic front was discovered near 370 mbsf at Site 737. The southern portion of the Kerguelen Plateau (Sites 738 and 744) records the lowest sedimentation rates (less than 5 m/m.y.) and thermal gradients (43°C/km) of the three study areas. Major cation fluxes at the southern sites are the lowest that we measured on the Kerguelen Plateau. High-resolution sampling provided evidence for significant silica release to the pore waters during the weathering of basement basalt. The relatively low thermal gradient does not appear to be sufficient for the formation of the opal-CT and quartz chert beds and nodules that were encountered below 120 mbsf at Site 738. Sediment-accumulation rates on the Eastern Kerguelen Sediment Ridge (Sites 745 and 746) are intermediate to those of the northern and southern sites. Deposition below the regional CCD accounts for the nearly carbonate-free, siliceous sediments. Despite their low organic carbon contents (mean = 0.15%), sediments on the Eastern Kerguelen Sediment Ridge exhibit the highest pore-water alkalinity (6.77 mM), ammonium (0.50 mM), and phosphate (23 µM) concentrations measured on the Kerguelen Plateau. Major cation fluxes are intermediate to those calculated for the northern and southern sites. The Eastern Kerguelen Sediment Ridge interstitial waters are unusual, however, in that the downward flux of magnesium is greater than the upward flux of calcium.
Resumo:
Most concentration profiles of sulfate in continental margin sediments show constant or continuously increasing gradients from the benthic boundary layer down to the deep sulfate reduction zone. However, a very marked change in this gradient has been observed several meters below the surface at many locations, which has been attributed to anoxic sulfide oxidation or to non-local transport mechanisms of pore waters. The subject of this study is to investigate whether this feature could be better explained by non-steady state conditions in the pore-water system. To this end, data are presented from two gravity cores recovered from the Zaire deep-sea fan. The sediments at this location can be subdivided into two sections. The upper layer, about 10 m thick, consists of stratified pelagic deposits representing a period of continuous sedimentation over the last 190 kyr. It is underlain by a turbidite sequence measuring several meters in thickness, which contains large crystals of authigenic calcium carbonate (ikaite: CaCO3·6H2O). Ikaite delta13C values are indicative of a methane carbon contribution to the CO2 pool. Radiocarbon ages of these minerals, as well as of the adjacent bulk sediments, provide strong evidence that the pelagic sediments have overthrust the lower section as a coherent block. Therefore, the emplacement of a relatively undisturbed sediment package is postulated. Pore-water profiles show the depth of the sulfate-methane transition zone within the turbiditic sediments. By the adaptation of a simple transport-reaction model, it is shown that the change in the geochemical environmental conditions, resulting from this slide emplacement, and the development towards a new steady state are fully sufficient to explain all features related to the pore-water profiles, particularly, [SO4]2- and dissolved inorganic carbon (DIC). The model shows that the downslope transport took place about 300 yr ago.