130 resultados para Overland journeys to the Pacific
em Publishing Network for Geoscientific
Resumo:
Distribution of Fe, Mn, P, Ti, Cu, Ni, Co, V, Cr, W, Mo, and As in the surface sediment layer on the section from the Hawaiian Islands to the coast of Mexico (Mexico section) is studied. Contents of all studied elements increase from biogenic-terrigenous sediments off the coast of Mexico to pelagic red clays of the Northeast Basin, and more sharply for mobile elements - Mn, Mo, Cu, Ni, Co, and As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basaltic composition with high contents of Ti, Fe, V, Cr, W, and P, contents of these elements increase sharply, and contents of Mn, Mo, Ni, Co, and Cu for the same reason decrease sharply in comparison with red clay. Abnormally high contents of Mn, Mo, Cu, Ni, Co, and As in the upper layer of hemipelagic and transition sediments of the Mexico section result from diagenetic redistribution and their accumulation on the surface. Processes of diagenetic redistribution in hemipelagic and transition sediment mass of the Mexico section are more rapid than in similar sediments of the Japan section due lower sedimentation rates and higher initial concentrations of Mn. Basic similarity of element distribution regularities in sediments of Japan and Mexico sections is shown.
Resumo:
In near-shore Pacific bottom sediments to the east of Japan unusually high content of free H2S ocurs. H2S resulting from bacterial reduction of sulfates from interstitial waters has a number of derivatives; pyrite dominates among them. Contents of other derivatives of H2S: sulfide sulfur and organic sulfur do not exceed 0,01%, content of organic sulfur does not exceed 0.1%. Due to reduction content of sulfates can reduce to 0,03% S. Capacity of the process of sulfate reduction, estimated by sum of all reduced forms of S - derivatives of H2S, is a function of organic matter content in sediments. Ability of bottom sediments to accumulate free H2S depends on content of reactive forms of Fe. Spatial distribution of reduced forms of S in the studied sediments is considered.
Resumo:
The late Eocene through earliest Oligocene (40-32 Ma) spans a major transition from greenhouse to icehouse climate, with net cooling and expansion of Antarctic glaciation shortly after the Eocene/Oligocene (E/O) boundary. We investigated the response of the oceanic biosphere to these changes by reconstructing barite and CaCO3 accumulation rates in sediments from the equatorial and North Pacific Ocean. These data allow us to evaluate temporal and geographical variability in export production and CaCO3 preservation. Barite accumulation rates were on average higher in the warmer late Eocene than in the colder early Oligocene, but cool periods within the Eocene were characterized by peaks in both barite and CaCO3 accumulation in the equatorial region. We infer that climatic changes not only affected deep ocean ventilation and chemistry, but also had profound effects on surface water characteristics influencing export productivity. The ratio of CaCO3 to barite accumulation rates, representing the ratio of particulate inorganic C accumulation to Corg export, increased dramatically at the E/O boundary. This suggests that long-term drawdown of atmospheric CO2 due to organic carbon deposition to the seafloor decreased, potentially offsetting decreasing pCO2 levels and associated cooling. The relatively larger increase in CaCO3 accumulation compared to export production at the E/O suggests that the permanent deepening of the calcite compensation depth (CCD) at that time stems primarily from changes in deep water chemistry and not from increased carbonate production.
Resumo:
During expedition 202 of research vessel SONNE in 2009, 39 sea-floor surface sediments were sampled over a wide area across the North Pacific and the Bering Sea, which are well suited as reference archives of modern environmental processes. In this study, we used the samples to infer the documentation of land-ocean linkages of terrigenous sediment supply. We followed an integrated approach of grain-size analysis, bulk mineralogy, and clay mineralogy in combination with statistical data evaluation (end-member modelling of grain-size data, fuzzy-cluster analysis of mineralogical data), in order to identify the significant sources and modes of sediment transport in an overregional context. We also compiled literature data on clay mineralogy and updated those with the new data. Today, two processes of terrigenous sediment supply prevail in the study area: far-distant aeolian sediment supply to the pelagic North Pacific as well as hemipelagic sediment dispersal from nearby land sources by ocean currents along the continental margins and island arcs of the study area. The aeolian particles show the finest grain sizes (clay and fine silt), while the hemipelagic sediments have high abundances of sortable silt, particles >10 microns.
Resumo:
Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.
Resumo:
Chemical and X-ray analyses were performed on the fifteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-Si02. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones. The analyses of fresh water iron-manganese precipitates by bacterial activity suggest that biological process is one of the important factors on the genesis of the sedimentary iron-manganese deposits, in¬cluding the manganese nodule.
Resumo:
Tungsten contents in iron-manganese nodules and crusts from different parts of the World Ocean, as well as its relationships with a number of chemical elements are under consideration. A trend to correlation of tungsten with Fe, Ti, W, Pb, and Co is noticed. Comparison of tungsten contents in the nodules and host sediments indicates its low geochemical mobility.