7 resultados para Other Languages, Societies, and Cultures

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay, New York, and the Bay of Fundy, Canada, grew significantly faster (16-190%; p < 0.05) when exposed to elevated levels of PCO2 ( 90-190 Pa=900-1900 µatm) compared to lower levels ( 40 Pa=400 µatm). Exposure to higher levels of PCO2 also resulted in significant increases (71-81%) in total cellular toxicity (fg saxitoxin equivalents/cell) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between PCO2 enrichment and elevated growth was reproducible in natural populations from New York waters. Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 150 Pa PCO2 compared to 39 Pa. During natural Alexandrium blooms in Northport Bay, PCO2 concentrations increased over the course of a bloom to more than 170 Pa and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may further exacerbate acidification and/or be especially adapted to these acidi-fied conditions. The co-occurrence of Alexandrium blooms and elevated PCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated PCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples from Ocean Drilling Program Hole 761C, collected on both sides of the Cretaceous/Tertiary boundary have been analyzed for their chemical and mineralogical content. The sediment consists of nannofossil ooze with variable amounts of clay. The boundary is marked by a color change associated with a nearly step-like decrease of the carbonate fraction. Paleomagnetic data and the drop of the carbonate content indicate that a strong reduction of the sedimentation rate occurred at the boundary and persisted for million of years. An iridium anomaly of 80 ng/cm**2, together with overabundances of Cr and Fe, are found in close coincidence with the planktonic crisis. These enrichments can be explained by the infall of =0.16 g/cm2 of Cl-like chondritic material. Co and Ni enrichments and a great quantity of Ni-rich magnetites are also observed in the basal Danian. These elements and minerals excepted, the composition of the insoluble fraction appears to be nearly unchanged across the boundary. Chemical and mineralogical observations support a cosmic origin for the Cretaceous/Tertiary event but do not reveal the presence of any significant impact ejecta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pot experiment was conducted to determine the effects of three biochars and compost on plant growth and the immobilisation of Cu in a contaminated soil obtained from a former wood preservation site in the Gironde County Saint Médard d'Eyrans, France (N 44° 43.353, W 0° 30.938). To assess Cu mobility, amended soils were analysed using CaCl**2 leaching tests pre- and post-incubation, and post-growth. Amended and unamended soils were planted with sunflower, and the resulting plant material was assessed for yield (mass and height) and Cu concentration. All amendments significantly reduced leachable Cu compared to the unamended soil, however, the greatest reductions in leachable Cu were associated with the higher biochar application rate. The greatest improvements in plant yields were obtained with the higher application rate of biochar in combination with compost. pH, DOC, EH were measured in soils to help explain the leaching and plant growth trends. Soil pore water was collected during plant growth and analysed for metal concentration, pH and EH. Prior to treatment, background analyses were carried out on the soil and individual amendments (including PAH + metal concentrations measured by gas chromatography mass spectrometry and ICP-AES respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferromanganese micro- and macronodules in eupelagic clays at Site AKO26-35 in the Southwest Pacific Basin were studied in order to check REE distribution during ferromanganese ore formation in non-productive zones of the Pacific Ocean. Host sediments and their labile fraction, ferromanganese micronodules (in size fractions 50-100, 100-250, 250-500, and >500 ?m) from eupelagic clays (horizons 37-10, 105-110, 165-175, and 189-190 cm), and buried ferromanganese micronodules (horizons 64-68, 158-159, and 165-166 cm) were under study. Based on partition analysis data anomalous REE enrichment in eupelagic clays from Site AKO26-35 is related to accumulation of rare earth elements in iron hydroxophosphates. Concentration of Ce generally bound with manganese oxyhydroxides is governed by oxidation of Mn and Ce in ocean surface waters. Micronodules (with Mn/Fe from 0.7 to 1.6) inherit compositional features of the labile fraction of bottom sediments. Concentrations of Ce, Co, and Th depend on micronodule sizes. Enrichment of micronodules in hydrogenic or hydrothermal matter is governed by their sizes and by a dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. Compositional variation of micro- and macronodules relative to the labile fraction of sediments in the Pacific non-productive zone dramatically differs from the pattern in bioproductive zones where micronodule compositions in coarser fractions are similar to those in associated macronodules and labile fractions of host sediments due to more intense suboxidative diagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum(IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses ofTrichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 µatm) and irradiance (50 and 200 µmol photons m-2 s-1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3- was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2treatment under high light. Light-dependent oxygen uptake was only detected underlow pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementarystudy looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.