22 resultados para Osbeckia crinita

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three Antarctic Ocean K/T boundary sequences from ODP Site 738C on the Kerguelen Plateau, ODP Site, 752B on Broken Ridge and ODP Site 690C on Maud Rise, Weddell Sea, have been analyzed for stratigraphic completeness and faunal turnover based on quantitative planktic foraminiferal studies. Results show that Site 738C, which has a laminated clay layer spanning the K/T boundary, is biostratigraphically complete with the earliest Tertiary Zones P0 and P1a present, but with short intrazonal hiatuses. Site 752B may be biostratigraphically complete and Site 690C has a hiatus at the K/T boundary with Zones P0 and P1a missing. Latest Cretaceous to earliest Tertiary planktic foraminiferal faunas from the Antarctic Ocean are cosmopolitan and similar to coeval faunas dominating in low, middle and northern high latitudes, although a few endemic species are present. This allows application of the current low and middle latitude zonation to Antarctic K/T boundary sequences. The most abundant endemic species is Chiloguembelina waiparaensis, which was believed to have evolved in the early Tertiary, but which apparently evolved as early as Chron 30N at Site 738C. Since this species is only rare in sediments of Site 690C in the Weddell Sea, this suggests that a watermass oceanographic barner may have existed between the Indian and Atlantic Antarctic Oceans. The cosmopolitan nature of the dominant fauna began during the last 200,000 to 300,000 years of the Cretaceous and continued at least 300,000 years into the Tertiary. This indicates a long-term environmental crisis that led to gradual elimination of specialized forms and takeover by generalists tolerant of wide ranging temperature, oxygen, salinity and nutrient conditions. A few thousand years before the K/T boundary these generalists gradually declined in abundance and species became generally dwarfed due to increased environmental stress. There is no evidence of a sudden mass killing of the Cretaceous fauna associated with a bolide impact at the K/T boundary. Instead, the already declining Cretaceous taxa gradually disappear in the early Danian and the opportunistic survivor taxa (Ch. waiparaensis and Guembelitria cretacea) increase in relative abundance coincident with the evolution of the first new Tertiary species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ~30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (~57-52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)-P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The delta13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene-lower Eocene (~57-52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi delta13C of 0.5 and 1.0? characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ~57 to 52-51 Ma, as also recognized at other locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stratigraphy of Paleogene deposits from high latitudes of the Pacific region (Koryak Highland, Kamchatka Peninsula, Karaginsky Island - in the northern hemisphere, Australian-Antarctic region - in the southern hemisphere) on planktonic foraminifera are under consideration in the book. Correlation with Paleogene of the warm Pacific belt is given. On the basis of geographic and stratigraphic distributions of planktonic foraminifera climatic zonation and the Paleogene climatic curve are analyzed. Description and photos of 115 species and varieties of planktonic foraminifera are given in the palaeontological part of the book.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktic foraminifera across the Paleocene-Eocene transition at DSDP Site 401 indicate that the benthic foraminiferal mass extinction occurred within Subzone P 6a of Berggren and Miller (1988), or PS of Berggren et al. (1995) and coincident with a sudden 2.0? excursion in 6r3C values. The benthic foraminiferal extinction event (BFEE) and Sr3C excursion was accompanied by a planktic foraminiferal turnover marked by an influx of warm water species (Morozovella and Acarinina), a decrease in cooler water species (Subbotina), a sudden short-term increase in low oxygen tolerant taxa (Chiloguembelina), and no significant species extinctions. These faunal changes suggest climatic warming, expansion of the oxygen minimum zone, and a well stratified ocean water column. Oxygen isotope data of the surface dweller M. subbotina suggest climate warming beginning with a gradual 0.5? decrease in delta180 in the 175 cm preceding the benthic foraminiferal extinction event followed by a sudden decrease of 1? (4°C) at the BFEE. The delta13C excursion occurred over 27 cm of sediment and, assuming constant sediment accumulation rates, represents a maximum of 23 ka. Recovery to pre-excursion delta13C values occurs within 172 cm, or about 144 ka. Climate cooling begins in Subzone P 6c as indicated by an increase in cooler water subbotinids and acarininids with rounded chambers and a decrease in warm water morozovellids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isotopic depth stratification and relative abundance studies of planktic foraminifera at ODP Site 738 reveal three major faunal turnovers during the latest Paleocene and early Eocene, reflecting the climatic and structural changes in the Antarctic surface ocean. Faunal Event 1 occurred near the Paleocene/Eocene boundary and is characterized by a faunal turnover in deep dwellers, decreased relative abundance in intermediate dwellers and increased relative abundance in surface dwellers. This event marks a temporary elimination of the vertical structure in the surface ocean over a period of more than 63,000 years that is apparently associated with the sudden shutdown of the "Antarctic Intermediate Water" production. The appearance of morozovellids before this event suggests that polar warming is the cause for the shutdown in the production of this water mass. At this time warm saline deep water may have formed at low latitudes. Faunal Event 2 occurred near the AP5a/AP5b Subzonal boundary and is characterized by a faunal turnover in deep dwellers with no apparent change in surface and intermediate dwellers. Increased individual size, wall-thickness and relative abundance in deep dwelling chiloguembelinids suggests the formation of a deep oxygen minima in the Antarctic Oceans during the maximum polar warming possibly as a result of upwelling of nutrient-rich deep water. Faunal Event 3 occurred in Subzone AP6 and is characterized by a faunal turnover in surface dwellers and a delayed diversification in deep dwellers. This event marks the onset of Antarctic cooling. A drastic decrease in the delta13C/delta18O values of the deep assemblage in Zone AP7 suggests an intensified thermocline and reduced upwelling following the polar cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over most of the Gulf of Mexico and Caribbean a hiatus is present between the lower upper Maastrichtian and lowermost Tertiary deposits; sedimentation resumed ~200 ka (upper zone Pla) after the K-T boundary. Current-bedded volcaniclastic sedimentary rocks at Deep Sea Drilling Project (DSDP) Sites 536 and 540, which were previously interpreted as impact-generated megawave deposits of K-T boundary age, are biostratigraphically of pre-K-T boundary age and probably represent turbidite or gravity-How deposits. The top 10 to 20 cm of this deposit at Site 536 contains very rare Micula prinsii, the uppermost Maastrichtian index taxon, as well as low values of Ir (0.6 pbb) and rare Ni-rich spinels. These indicate possible reworking of sediments of K-T boundary age at the hiatus. Absence of continuous sediment accumulation across the K-T boundary in the 16 Gulf of Mexico and Caribbean sections examined prevents their providing evidence of impact-generated megawave deposits in this region. Our study indicates that the most complete trans-K-T stratigraphic records may be found in onshore marine sections of Mexico, Cuba, and Haiti. The stratigraphic records of these areas should be investigated further for evidence of impact deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A virtually complete composite history of Cenozoic pelagic sedimentation was recovered from ODP Sites 738 (62°43' S) and 744 (61°35' S), drilled during Leg 119 on the Kerguelen Plateau. An excellent magnetobiochronologic record was obtained from upper Eocene through Holocene sediments at Site 744, and an expanded lower Paleocene through lower Oligocene sequence was cored at Hole 738. Analysis of the stratigraphic distribution of over 125 planktonic foraminifer taxa from these sites reveals changes in species composition that were strongly influenced by the climatic evolution of Antarctic water masses. Early Paleocene planktonic foraminifer assemblages are nearly identical in species composition to coeval assemblages from low and middle latitude sites, showing the same patterns of post-extinction recovery and taxonomic radiation. Biogeographic isolation, revealed by the absence of tropical keeled species, became apparent by late early Paleocene time. Diversity increased near the Paleocene/Eocene boundary when keeled morozovellids immigrated to the Kerguelen Plateau. Greatest diversity (23 species) was achieved by early Eocene time, corresponding to a Cenozoic warming maximum that has been recognized in lower Eocene deep sea and terrestrial sediments worldwide. A gradual decline in diversity from the late early through middle Eocene, primarily due to the disappearance of acarininids, parallels the record of cooling paleotemperatures in Southern Ocean surface waters. Chiloguembelina-dominated assemblages appeared in the late middle Eocene and persisted through the early Oligocene as Antarctic surface waters became thermally isolated. Late Eocene and early Oligocene assemblages exhibit considerably lower diversity than the older Eocene faunas, and were dominated by chiloguembelinids, subbotinids, and catapsydracids during a time of pronounced climatic cooling and development of continental glaciation on East Antarctica. The small foraminifer Globigerinit? juvenilis replaced chiloguembelinids as the dominant taxon during the late Oligocene. Diversity increased slightly toward the end of the late Oligocene with new appearances of several tenuitellid, globoturborotalitid, and globigerinid species. The trend toward diminishing planktonic foraminifer diversity was renewed during the late early Miocene as siliceous productivity increased in the Antarctic surface waters, culminating with the reduction to nearly monospecific assemblages of Neogloboqu?drin? p?chyderm? that occur in Pliocene-Holocene biosiliceous sediments. An Antarctic Paleogene zonal scheme previously devised for ODP Sites 689 and 690 in the Weddell Sea is used to biostratigraphically subdivide the Kerguelen Plateau sequence. The definition of one Antarctic Paleogene biozone is modified in the present study to facilitate correlation within the southern high latitudes. The ages of 13 late Eoceneearly Miocene datum events are calibrated based on a magnetobiochronologic age model developed for Site 744.