12 resultados para Orlicz Type Indices

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precisely determined refractive indices of glass shards from 32 ash-rich, volcaniclastic sediments, mostly turbidites interbedded with nonvolcanic sediments in the Mariana Trough, range from 1.480 to 1.585 (corresponding to SiO2 ca. 75 to 49%), with most in the range 1.500 to 1.540 (SiO2 ca. 70-62%) and a second, smaller mode between ca. 1.560 and 1.585 (57 to 49% SiO2). Shards are almost exclusively colorless from 1.480 to ca. 1.530, light brown with minor colorless and green tones between 1.530 and 1.560, and dominantly brown at higher refractive indices. Tubular pumice shards are more common at higher silica percentages and non- to poorly-vesicular cuniform shards at low SiO2 values, but there is no clear correlation between shape and composition of shards. About half of the samples have bimodal shard populations with silica differences ranging up to 20 percent; unimodal layers have a range of up to about 7 percent SiO2. Of 21 samples in which one type of shard dominates, seven have the main mode in the rhyolitic composition (>69% SiO2), eight in the intermediate range (56 to 69% SiO2), and five in mafic composition (SiO2 <53%). These unusually abundant mafic shards occur mainly in site survey piston cores, SP-IA and 4E, and in Holes 454, 456, 458, and 459B. These are the sites closest to the present arc. Hole 453, containing by far the most vitric tuff turbidites, shows a gradual increase in silica content of ash layers upward to the hole from Cores 36 to 19 (about 4.6 to 3.0 Ma). A drastic decrease in ash-rich beds in the younger (Pleistocene) part of this hole was noted by the shipboard party (see site chapter, Site 453) and was interpreted by them as indicating increasing distance from the arc volcanoes as the trough opened. The increase in silica in ashes from the early to the late Pliocene at Site 453 could be interpreted in the same way and might indicate that the trough started to open in early Pliocene time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total organic carbon (TOC) and calcium carbonate (CaCO3) concentrations were determined for 304 samples, and biomarkers were analyzed for 101 samples from Core 167-1016C-1H. TOC varies between 1% and 2%, and CaCO3 is typically 1%-4%, with peaks reaching 14%. Paleotemperature estimated from Uk'37 varies from 8.5° to 17.5°C. The Uk'37 variation implies that Core 167-1016C-1H covers oxygen isotope Stages 1-6. Peaks of diatom-derived C25:1 HBI alkene concentrations occur during warming intervals, suggesting intensified upwelling during deglaciation. The concentrations of haptophyte-derived alkenones and diatom-derived C25:1 HBI alkene vary out of phase, which presumably resulted from the changes in the mode of nutrient supply to surface mixed layer. Maximal CaCO3 contents (>10%) were observed in both warming and cooling intervals. The peak in cooling interval relates to an alkenone maximum, whereas the peaks in warming intervals do not. This implies that carbonate production is not the only factor controlling carbonate compensation depth at this site, and it suggests considering the changes in North Pacific deep-water chemistry. Petroleum-type compounds are present in Site 1016 sediments. Their concentrations are maximized in the warming intervals that correspond to the timing of destruction of a huge tar mound off Point Conception. The tarry material was presumably transported by the Arguello Fan system to Site 1016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the reasons for animals not to grow as fast as they potentially could is that fast growth has been shown to be associated with reduced lifespan. However, we are still lacking a clear description of the reality of growth-dependent modulation of ageing mechanisms in wild animals. Using the particular growth trajectory of small king penguin chicks naturally exhibiting higher-than-normal growth rate to compensate for the winter break, we tested whether oxidative stress and telomere shortening are related to growth trajectories. Plasma antioxidant defences, oxidative damage levels and telomere length were measured at the beginning and at the end of the post-winter growth period in three groups of chicks (small chicks, which either passed away or survived the growth period, and large chicks). Small chicks that died early during the growth period had the highest level of oxidative damage and the shortest telomere lengths prior to death. Here, we show that small chicks that grew faster did it at the detriment of body maintenance mechanisms as shown by (i) higher oxidative damage and (ii) accelerated telomere loss. Our study provides the first evidence for a mechanistic link between growth and ageing rates under natural conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species distribution patterns in planktonic foraminiferal assemblages are fundamental to the understanding of the determinants of their ecology. Until now, data used to identify such distribution patterns was mainly acquired using the standard >150 µm sieve size. However, given that assemblage shell size-range in planktonic foraminifera is not constant, this data acquisition practice could introduce artefacts in the distributional data. Here, we investigated the link between assemblage shell size-range and diversity in Recent planktonic foraminifera by analysing multiple sieve-size fractions in 12 samples spanning all bioprovinces of the Atlantic Ocean. Using five diversity indices covering various aspects of community structure, we found that counts from the >63 µm fraction in polar oceans and the >125 µm elsewhere sufficiently approximate maximum diversity in all Recent assemblages. Diversity values based on counts from the >150 µm fraction significantly underestimate maximum diversity in the polar and surprisingly also in the tropical provinces. Although the new methodology changes the shape of the diversity/sea-surface temperature (SST) relationship, its strength appears unaffected. Our analysis reveals that increasing diversity in planktonic foraminiferal assemblages is coupled with a progressive addition of larger species that have distinct, offset shell-size distributions. Thus, the previously documented increase in overall assemblage shell size-range towards lower latitudes is linked to an expanding shell-size disparity between species from the same locality. This observation supports the idea that diversity and shell size-range disparity in foraminiferal assemblages are the result of niche separation. Increasing SST leads to enhanced surface water stratification and results in vertical niche separation, which permits ecological specialisation. Specific deviations from the overall diversity and shell-size disparity latitudinal pattern are seen in regions of surface-water instability, indicating that coupled shell-size and diversity measurements could be used to reconstruct water column structures of past oceans.