14 resultados para Orientations

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleomagnetic measurements of sediment samples provide the magnetostratigraphy at Deep Sea Drilling Sites 582, 583, and 584 in the Nankai Trough and the Japan Trench. Drastic changes in the rate of sediment accumulation are documented by the magnetostratigraphic and biostratigraphic correlations. The changes in the accumulation rate correspond to the supply of sediments and variations in the accretionary process, which are directly related to the tectonic cycles in the geologic evolution of the Japanese island arc. Faults and folds within the drilled sedimentary sequences are oriented by paleomagnetic declination. Their directions and stress patterns are related to the relative plate motion along the trough and trench. The original remanent magnetization of the sediment was modified and remagnetized in the tectonic process of accretion by physical deformation, faulting, and intrusion of dewatering veinlets.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In weakly indurated, nannofossil-rich, deep-sea carbonates compressional wave velocity is up to twice as fast parallel to bedding than normal to it. It has been suggested that this anisotropy is due to alignment of calcite c-axes perpendicular to the shields of coccoliths and shield deposition parallel to bedding. This hypothesis was tested by measuring the preferred orientation (fabric) of calcite c-axes in acoustic anisotropic, calcareous DSDP sediment samples by X-ray goniometry, and it was found that the maximum c-axis concentrations are by far too low to explain the anisotropies. The X-ray method is subject to a number of uncertainties due to preparatory and technical shortcomings in weakly indurated rocks. The most serious weaknesses are: sample preparation, volume of measured sample (fraction of a mm3), beam defocusing and background intensity corrections, combination of incomplete pole figures, and necessity of recalculation of the c-axis orientations from other crystallographic directions. Goniometry using thermal neutrons overcomes most of these difficulties, but it is time consuming. We test the interferences made about velocity anisotropy by X-ray studies about the concentration of c-axes in deep-sea carbonates by employing neutron texture goniometry to eight DSDP samples comprising mostly nannofossil material. Fabric and sonic velocity were determined directly on the core specimens, thus from the same rock volume and requiring no preparation. The c-axis orientation is obtained directly from the [0006] calcite diffraction peak without corrections. The fabrics are clearly defined, but weak (1.1 to 1.86 times uniform) with the maximum about normal to bedding. They have crudely orthorhombic symmetry, but are not axisymmetric around the bedding normal. The observed c-axis intensities, although higher than determined by the X-ray method on other samples, are by far too low to explain the observed acoustic anisotropies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measurements, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core. Anelastic strain recovery is a relatively new technique. Because use of the method has extended to a wider range of rock types, the literature has begun to include examples of rocks that contracted with time. Strong circumstantial evidence exists to suggest that core-sample contractions result from the slow diffusion of pore fluids from a preexisting microcrack structure that permits the rock to deflate at a greater rate than the expansion caused by anelastic strain recovery. Both expansions and contractions of the Leg 123 cores were observed. The basalt cores have clearly been intersected by an abundance of preexisting fractures, some of which pass right through the samples, but many are intercepted or terminate within the rock matrix. Thus, the behavior of the core samples will be influenced not only by the properties of the rock matrix between the fractures, but also by how these macro- and micro-scale fractures mutually interact. The strain-recovery curves recorded during Leg 123 for each of the 15 basalt core samples may reflect the result of two competing time dependent processes: anelastic strain recovery and pore pressure recovery. Were these the only two processes to influence the gauge responses, then one might expect that given the additional information required, established theoretical models might be used to determine consistent stress orientations and reliable stress magnitudes. However, superimposed upon these competing processes is their respective interaction with the preexisting fractures that intersect each core. Evidence from our experiments and observations suggests that these fractures have a dominating influence on the characteristics of the recovery curves and that their effects are complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three sites were drilled in the Izu-Bonin forearc basin during Ocean Drilling Program (ODP) Leg 126. High-quality formation microscanner (FMS) data from two of the sites provide images of part of a thick, volcaniclastic, middle to upper Oligocene, basin-plain turbidite succession. The FMS images were used to construct bed-by-bed sedimentary sections for the depth intervals 2232-2441 m below rig floor (mbrf) in Hole 792E, and 4023-4330 mbrf in Hole 793B. Beds vary in thickness from those that are near or below the resolution of the FMS tool (2.5 cm) to those that are 10-15 m thick. The bed thicknesses are distributed according to a power law with an exponent of about 1.0. There are no obvious upward thickening or thinning sequences in the bed-by-bed sections. Spaced packets of thick and very thick beds may be a response to (1) low stands of global sea level, particularly at 30 Ma, (2) periods of increased tectonic uplift, or (3) periods of more intense volcanism. Graded sandstones, most pebbly sandstones, and graded to graded-stratified conglomerates were deposited by turbidity currents. The very thick, mainly structureless beds of sandstone, pebbly sandstone, and pebble conglomerate are interpreted as sandy debris-flow deposits. Many of the sediment gravity flows may have been triggered by earthquakes. Long recurrence intervals of 0.3-1 m.y. for the very thickest beds are consistent with triggering by large-magnitude earthquakes (M = 9) with epicenters approximately 10-50 km away from large, unstable accumulations of volcaniclastic sand and ash on the flanks of arc volcanoes. Paleocurrents were obtained from the grain fabric of six thicker sandstone beds, and ripple migration directions in about 40 thinner beds; orientations were constrained by the FMS images. The data from ripples are very scattered and cannot be used to specify source positions. They do, however, indicate that the paleoenvironment was a basin plain where weaker currents were free to follow a broad range of flow paths. The data from sandstone fabric are more reliable and indicate that turbidity currents flowed toward 150? during the time period from 28.9 to 27.3 Ma. This direction is essentially along the axis of the forearc basin, from north to south, with a small component of flow away from the western margin of the basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nearly continuous recovery of 0.5 km of generally fresh, layer 3 gabbroic rocks at Hole 735B, especially near the bottom of the section, presents scientists an unusual opportunity to study the detailed elastic properties of the lower oceanic crust. Extending compressional-wave and density shipboard measurements at room pressure, Vp and Vs were measured at pressures from 20 to 200 MPa using the pulse transmission method. All of the rocks exhibit significant increases in velocity with increasing pressure up to about 150 MPa, a feature attributed to the closing of microcrack porosity. Measured velocities reflect the mineralogical makeup and microstructures acquired during the tectonic history of Hole 735B. Most of the undeformed and unaltered gabbros are approximately 65:35 plagioclase/clinopyroxene rocks plus olivine or oxide minerals, and the observed densities and velocities are fully consistent with the Voigt-Reuss-Hill (VRH) averages of the component minerals and their proportions. Depending on their olivine content, the predominant olivine gabbros at 200 MPa have average Vp = 7.1 ± 0.2 km/s, Vs = 3.9 ± 0.1 km/s, and grain densities of 2.95 ± 0.5 g/cm3. The less abundant iron-titanium (Fe-Ti) oxide gabbros average Vp = 6.75 ± 0.15 km/s, Vs = 3.70 ± 0.1 km/s, and grain densities of 3.22 ± 0.05 g/cm3, reflecting the higher densities and lower velocities of oxide minerals compared to olivine. About 30% of the core is plastically deformed, and the densities and directionally averaged velocities of these shear-zone tectonites are generally consistent with those of the gabbros, their protoliths. Three sets of observations indicate that the shear-zone metagabbros are elastically anisotropic: (1) directional variations in Vp, both vertical and horizontal and with respect to foliation and lineation; (2) discrepancies among Vp values for the horizontal cores and the VRH averages of the component minerals and their mineral proportions, suggesting preferred crystallographic orientations of anisotropic minerals; and (3) variations of Vs of up to 7%, with polarization directions parallel and perpendicular to foliation. Optical inspection of thin sections of the same samples indicates that plagioclase feldspar, clinopyroxene, and amphibole typically display crystallographic-preferred orientations, and this, plus the elastic anisotropy of these minerals, suggests that preferred orientations are responsible for much of the observed anisotropy, particularly at high pressure. Alteration tends to be localized to brittle faults and brecciated zones, and typical alteration minerals are amphibole and secondary plagioclase, which do not significantly change the velocity-density relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m**-2 d**-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. Flume experiments were conducted in February 2013 at the Institute for Environmental Sciences, University of Koblenz-Landau Landau. Experiments were performed in a closed oval-shaped acrylic glass flume with cross-sectional width of 4 cm and height of 10 cm and total length of 54 cm. The fluid flow was induced by a propeller driven by a motor and mean flow velocities of up to 20 cm s-1 were generated by applying voltages between 0 V and 4 V DC. The flume was completely sealed with an acrylic glass cover. Oxygen sensors were inserted through rubber seal fittings and allowed positioning the sensors with inclinations to the main flow direction of ~60°, ~95° and ~135°. A Clark type electrochemical O2 microsensor with a low stirring sensitivity (0.7%) was tested and a fast-responding needle-type O2 optode (PyroScience GmbH, Germany) was used as reference as optodes should not be stirring sensitive. Instantaneous three-dimensional flow velocities were measured at 7.4 Hz using stereoscopic particle image velocimetry (PIV). The velocity at the sensor tip was extracted. The correlation of the fluctuating O2 sensor signals and the fluctuating velocities was quantified with a cross-correlation analysis. A significant cross-correlation is equivalent to a significant artificial flux. For a total of 18 experiments the flow velocity was adjusted between 1.7 and 19.2 cm s**-1, and 3 different orientations of the electrochemical sensor were tested with inclination angles of ~60°, ~95° and ~135° with respect to the main flow direction. In experiments 16-18, wavelike flow was induced, whereas in all other experiments the motor was driven by constant voltages. In 7 experiments, O2 was additionally measured by optodes. Although performed simultaneously with the electrochemical sensor, optode measurements are listed as separate experiments (denoted by the attached 'op' in the filename), because the velocity time series was extracted at the optode tip, located at a different position in the flume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quartz Crystallographic Preferred Orientation (CPO) patterns are most commonly a result of deformation by dislocation creep. We investigated whether Dissolution-Precipitation Creep (DPC) a process that occur at lower differential stresses and temperatures, may result in CPO in quartz. Within the Purgatory Conglomerate, DPC led to quartz dissolution along cobble surfaces perpendicular to the shortening direction, and quartz precipitation in overgrowths at the ends of the cobbles (strain shadows), parallel to the maximum extension direction. The Purgatory Conglomerate is part of the SE Narragansett basin where strain intensity increases from west to east and is associated with top-to-the-west transport and folding during the Alleghanian orogeny. Quartz c-axis orientations as revealed by Electron Backscatter Diffraction (EBSD) methods, were random in all analyzed domains within the cobbles and strain shadows irrespective of the intensity of strain or metamorphic grade of the sample. Quartz dissolution probably occurred exclusively along the cobbles' margins, leaving the remaining grains unaffected by DPC. The fact that quartz precipitated in random orientations may indicate that the strain shadows were regions of little or no differential stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laboratory compressional wave (Vp) and shear wave (Vs) velocities were measured as a function of confining pressure for the gabbros from Hole 735B and compared to results from Leg 118. The upper 500 m of the hole has a Vp mean value of 6895 m/s measured at 200 MPa, and at 500 meters below seafloor (mbsf), Vp measurements show a mean value of 7036 m/s. Vs mean values in the same intervals are 3840 m/s and 3857 m/s, respectively. The mean Vp and Vs values obtained from log data in the upper 600 m are 6520 and 3518 m/s, respectively. These results show a general increase in velocity with depth and the velocity gradients estimate an upper mantle depth of 3.32 km. This value agrees with previous work based on dredged samples and inversion of rare element concentrations in basalts dredged from the conjugate site to the north of the Atlantis Bank. Laboratory measurements show Vp anisotropy ranging between 0.4% and 8.8%, with the majority of the samples having values less than 3.8%. Measurements of velocity anisotropy seem to be associated with zones of high crystal-plastic deformation with predominant preferred mineral orientations of plagioclase, amphiboles, and pyroxenes. These findings are consistent with results on gabbros from the Hess Deep area and suggest that plastic deformation may play an important role in the seismic properties of the lower oceanic crust. In contrast to ophiolite studies, many of the olivine gabbros show a small degree of anisotropy. Log derived Vs anisotropy shows an average of 5.8% for the upper 600 m of Hole 735B and tends to decrease with depth where the overburden pressure and the age of the crustal section suggests closure of cracks and infilling of fractures by alteration minerals. Overall the results indicate that the average shear wave splitting in Hole 735B might be influenced by preferred structural orientations and the average value of shear wave splitting may not be a maximum because structural dips are <90°. The maximum fast-wave orientation values could be influenced by structural features striking slightly oblique to this orientation or by near-field stress concentrations. However, flexural wave dispersion analyses have not been performed to confirm this hypothesis or to indicate to what extent the near-field stresses may be influencing shear wave propagation. Acoustic impedance contrasts calculated from laboratory and logging data were used to generate synthetic seismograms that aid in the interpretation of reflection profiles. Several prominent reflections produced by these calculations suggest that Fe-Ti oxides and shear zones may contribute to the reflective nature of the lower oceanic crust. Laboratory velocity attenuation (Q) measurements from below 500 m have a mean value of 35.1, which is consistent with previous vertical seismic profile (VSP) and laboratory measurements on the upper 500 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution geophysical and sediment core data are used to investigate the pattern and dynamics of former ice flow in Kvitøya Trough, northwestern Barents Sea. A new swath-bathymetric dataset identifies three types of submarine landform in the study area (streamlined landforms, meltwater channels and cavities, iceberg scours). Subglacially produced streamlined landforms provide a record of ice flow through Kvitøya Trough during the last glaciation. Flow directions are inferred from the orientations of streamlined landforms (drumlins, crag-and-tail features). Ice flowed northward for at least 135 km from an ice divide at the southern end of Kvitøya Trough. A large channel-cavity system incised into bedrock in the southern trough indicates that subglacial meltwater was present at the former ice-sheet base. Modest landform elongation ratios and a lack of mega-scale glacial lineations suggest that, although ice in Kvitøya Trough was melting at the bed and flowed faster than the likely thin and cold-based ice on adjacent banks, a major ice stream probably did not occupy the trough. Retreat was relatively rapid after 14-13.5 14C kyr B.P. and probably progressed via ice sheet-bed decoupling in response to rising sea level. There is little evidence for still stands during ice retreat or of ice-proximal deglacial sediments. Relict iceberg scours in present-day water depths of more than 350 m in the northern trough indicate that calving was an important mass loss mechanism during retreat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bedforms both reflect and influence shallow water hydrodynamics and sediment dynamics. A correct characterization of their spatial distribution and dimensions is required for the understanding, assessment and prediction of numerous coastal processes. A method to parameterize geometrical characteristics using two-dimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct morphological regions. The most energetic peak and the slope and intercept of the power-law showed high values above the crest of the primary bedforms and scour holes, low values in areas without bedforms, and intermediate values in areas with secondary bedforms. The secondary bedform dimensions and orientations were calculated. An area of 700x700 m was used to determine the characteristics of the primary bedforms. However, they were less distinctively characterized compared to the secondary bedforms due to relatively large variations in their orientations and wavelengths. The method is thus appropriate for morphological classification of the seabed and for bedform characterization, being most efficient in areas characterized by bedforms with regular dimensions and directions.