803 resultados para Organophilic Montmorillonite
em Publishing Network for Geoscientific
Resumo:
Cretaceous, Tertiary, and Quaternary sediments from Deep Sea Drilling Project Sites 164 and 196 (13°12' N, 161°31' W and 30°07' N, 148°34' E, respectively) were analyzed for major chemical elements and mineralogy. Sediments from these sites contain large proportions of authigenic minerals: mainly palygorskite, clinoptilolite and chert in the Cretaceous, and montmorillonite, phillipsite and chert in the Tertiary. The montmorillonite-phillipsite assemblage is thought to be derived from volcanic ash or glass, and the palygorskite-clinoptilolite assemblage is thought to be derived by reaction of biogenic silica with volcanic ash or glass or with montmorillonite and phillipsite. Both assemblages have generally moderate Ti/Al ratios, ranging from 0.026 to 0.047, so most of the palygorskite, clinoptilolite, montmorillonite and phillipsite could not be derived in situ from alteration of basaltic material. Plagioclase compositions suggest that the volcanic precursors were silicic or intermediate, but it is also possible that the sediments have been extensively fractionated by redistribution from nearby seamounts. Available data on other Late Cretaceous sediments in the Pacific were analyzed. Clinoptilolite and chert are present nearly everywhere where palygorskite is abundant; phillipsite is rare where palygorskite is abundant. It is suggested that increased water temperatures during the Cretaceous increased reaction rates and determined the alteration products.
Resumo:
Two quadrupole splitting doublets with delta E_q = 0.74 and 1.62 mm/s were found in the montmorillonite spectra. The more intense doublet corresponds to iron in a somewhat distorted tetrahedral coordination, while the less intense corresponds to quadri-coordinated iron. The EPR spectrum also exhibits two lines with a q-factor of 3 and 4.3, which corresponds to transformed minerals.
Resumo:
The scope of this PhD thesis was the hydrogeological conceptualisation of the Upper Ouémé river catchment in Benin. The study area exceeds 14,500 km**2 and is underlain by a crystalline basement. At this setting the typical sequence of aquifers - a regolith aquifer at the top and a fractured bedrock aquifer at the bottom - is encountered, which is found in basement areas all over Africa and elsewhere in the world. The chosen regional approach revealed important information about the hydrochemistry and hydrogeology of this catchment. Based on the regional conceptual model a numerical groundwater flow model was designed. The numerical model was used to estimate the impact of climate change on the regional groundwater resources. This study was realised within the framework of the German interdisciplinary research project IMPETUS (English translation: "Integrated approach to the efficient management of scarce water resources in West Africa"), which is jointly managed by the German universities of Bonn and Cologne. Since the year 2000 the Upper Ouémé catchment was the principal target for investigations into the relevant processes of the regional water cycle. A first study from 2000 to 2003 (Fass, 2004, http://nbn-resolving.de/urn:nbn:de:hbz:5n-03849) focused on the hydrogeology of a small local catchment (~30 km**2). In the course of this thesis five field campaigns were underdone from the year 2004 to 2006. In the beginning of 2004 a groundwater monitoring net was installed based on 12 automatic data loggers. Manual piezometric measurements and the sampling of groundwater and surface water were realised for each campaign throughout the whole study area. Water samples were analysed for major ions, for a choice of heavy metals and for their composition by deuterium, oxygen-18 and tritium. The numerical model was performed with FEFLOW. The hydraulic and hydrochemical characteristics were described for the regolith aquifer and the bedrock aquifer. The regolith aquifer plays the role of the groundwater stock with low conductivity while the fractures of the bedrock may conduct water relatively fast towards extraction points. Flow in fractures of the bedrock depends on the connectivity of the fracture network which might be of local to subregional importance. Stable isotopes in combination with hydrochemistry proved that recharge occurs on catchment scale and exclusively by precipitation. Influx of groundwater from distant areas along dominant structures like the Kandi fault or from the Atacora mountain chain is excluded. The analysis of tritium in groundwater from different depths revealed the interesting fact of the strongly rising groundwater ages. Bedrock groundwater may possibly be much older than 50 years. Equilibrium phases of the silicate weathering products kaolinite and montmorillonite showed that the deeper part of the regolith aquifer and the bedrock aquifer feature either stagnant or less mobile groundwater while the shallow aquifer level is influenced by seasonal groundwater table fluctuations. The hydrochemical data characterised this zone by the progressive change of the hydrochemical facies of recently infiltrated rainwater on its flow path into deeper parts of the aquifers. Surprisingly it was found out that seasonal influences on groundwater hydrochemistry are minor, mainly because they affect only the groundwater levels close to the surface. The transfer of the hydrogeological features of the Upper Ouémé catchment into a regional numerical model demanded a strong simplification. Groundwater tables are a reprint of the general surface morphology. Pumping or other types of groundwater extraction would have only very local impact on the available groundwater resources. It was possible to integrate IMPETUS scenario data into the groundwater model. As a result it was shown that the impact of climate change on the groundwater resources until the year 2025 under the given conditions will be negligible due to the little share of precipitation needed for recharge and the low water needs for domestic use. Reason for concern is the groundwater quality on water points in the vicinity of settlements because of contamination by human activities as shown for the village of Dogué. Nitrate concentrations achieved in many places already alerting levels. Health risks from fluoride or heavy metals were excluded for the Upper Ouémé area.
Resumo:
Sedimentary rocks of Barremian through early Maestrichtian age recovered on Deep Sea Drilling Project Leg 61 had their principal source in the complex of igneous rocks with which they are interlayered in the Nauru Basin. Relict textures and primary sedimentary structures show these Cretaceous sediments to be of hyaloclastic origin, in part reworked and redeposited by slumps and currents. The dominant composition now is smectite, but locally iron, titanium, and manganese oxides, plagioclase, pyroxene, analcime, clinoptilolite, chalcedonic quartz, cristobalite, amphibole, nontronite, celadonite, and pyrite are also present. The mineral assemblages and the geochemistry reflect the original basaltic composition and its subsequent alteration by one or more processes of submarine weathering, authigenesis, hydrothermal circulation, and contact metamorphism. Hyaloclastitic sandstone, siltstone, and breccia within the sheet flows below 729 meters sub-bottom depth have Barremian fossils, thus establishing the age of the lower, or extrusive, complex of post-ridge-crest volcanism. Similar hyaloclastites between 564 and 729 meters are invaded by hypabyssal sills of the upper igneous complex, and fossil ages of Albian or Cenomanian set an older limit to the age of that second post-ridge-crest episode. Cenomanian to early Campanian sedimentary rocks between 490 and 564 meters have a substantial contribution of clays of submarine-weathered-basalt origin, as well as hydrothermal and pelagic components. The interval of reworked hyaloclastitic siltstone, sandstone, and breccias between 450 and 490 meters is of late Campanian and early Maestrichtian age. These sediments probably formed from glassy basalt that fragmented upon eruption nearby, when sills were being emplaced. In addition to pelagic elements, these Upper Cretaceous volcanogenic sediments include redeposited material of shallow-water origin, apparently derived from the Marshall Islands.
Resumo:
Widespread Lower Cretaceous magmatism occurred along the Indian-Australian/Antarctic margins, and in the juvenile Indian Ocean, during the rifting of eastern Gondwana. The formation of this magmatic province probably began around 120-130 Ma with the eruption of basalts on the Naturaliste Plateau and at Bunbury, western Australia. On the northeast margin of India, activity began around 117 Ma with the Rajmahal continental basalts and associated lamprophyre intrusions. The formation of the Kerguelen Plateau in the Indian Ocean began no later than 114 Ma. Ultramafic lamprophyres (alnoites) were emplaced in the Prince Charles Mountains near the Antarctic continental margin at ~ 110 Ma. These events are considered to be related to a major mantle plume, the remnant of which is situated beneath the region of Kerguelen and Heard islands at the present day. Geochemical data are presented for each of these volcanic suites and are indicative of complex interactions between asthenosphere-derived magmas and the continental lithosphere. Kerguelen Plateau basalts have Sr and Nd isotopic compositions lying outside the field for Indian Ocean mid-ocean ridge basalts (MORB) but, with the exception of Site 738 at the southern end of the plateau, within the range of more recent hotspot basalts from Kerguelen and Heard Islands. However, a number of the plateau tholeiites are characterized by lower 206Pb/204Pb ratios than are basalts from Kerguelen Island, and many also have anomalously high La/Nb ratios. These features suggest that the source of the Kerguelen Plateau basalts suffered contamination by components derived from the Gondwana continental lithosphere. An extreme expression of this lithospheric signature is shown by a tholeiite from Site 738, suggesting that the southernmost part of the Kerguelen Plateau may be underlain by continental crust. The Rajmahal tholeiites mostly fall into two distinct geochemical groups. Some Group I tholeiites have Sr and Nd isotopic compositions and incompatible element abundances, similar to Kerguelen Plateau tholeiites from Sites 749 and 750, indicating that the Kerguelen-Heard mantle plume may have directly furnished Rajmahal volcanism. However, their elevated 207Pb/204Pb ratios indicate that these magmas did not totally escape contamination by continental lithosphere. In contrast to the Group I tholeiites, significant contamination is suggested for Group II Rajmahal tholeiites, on the basis of incompatible element abundances and isotopic compositions. The Naturaliste Plateau and the Bunbury Basalt samples show varying degrees of enrichment in incompatible elements over normal MORB. The Naturaliste Plateau samples (and Bunbury Basalt) have high La/Nb ratios, a feature not inconsistent with the notion that the plateau may consist of stretched continental lithosphere, near the ocean-continent divide.
Resumo:
Chemical analyses were performed on seveteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-SiO2. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones.
Resumo:
Chemical and X-ray analyses were performed on the fifteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-Si02. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones. The analyses of fresh water iron-manganese precipitates by bacterial activity suggest that biological process is one of the important factors on the genesis of the sedimentary iron-manganese deposits, in¬cluding the manganese nodule.
Resumo:
Small glassy spheres, ellipsoids, teardrops, cylinders and dumbbells occur in large numbers in Tertiary deep sea clays cored in the northeastern Pacific by the Deep Sea Drilling Project. These objects morphologically resemble microtektites, but have the composition of an oceanic tholeiite. On the basis of their composition and stratigraphic relationship it is considered that they are of volcanic origin and most likely have been formed in deep water by submarine volcanic processes.