71 resultados para Organic Detritus
em Publishing Network for Geoscientific
Resumo:
Particles of detritus were counted by size-groups and microplankton cells in samples stained with acid fuchsin and acridine orange. Data were obtained for eutrophic and oligotrophic waters. Seston in the eutrophic layer of eutrophic waters consists of 22-65% phytoplankton, 3-18% microzooplankton, and 32-65% detritus; in oligotrophic waters - of 3-7% phytoplankton, 1-5% microzooplankton, and 92-97% detritus. Amount of detritus in seston increases with depth up to 4.4 µg C/l (sigma = 1.48) at 500-4000 m. Microplankton biomass in deep water contains mostly olive-green cells and bacteria; no microzooplankton <200 µm long was found below 200 m. Aggregates 10-50 µm in diameter and fragments of organisms 50-200 µm long were dominant by weight among detrital particles. No discernible associations of microorganisms with detrital particles were observed.
Resumo:
Recent and Late Quaternary shelf phosphorites have low Fe, Ti and Al contents. These elements enter the phosphorites with terrigenous impurities and organic detritus. Ti, Al, and some Fe are removed when the phosphorites are lithified, whereas remaining iron settles in the phosphorites as sulfides. Ti/Fe, Al/Fe and Ti/Al ratios are used as examples of difference between behavior of Fe and that of Ti and Al.
Resumo:
Causes of change in deep water delta13C can be either global or local in extent. Global causes include (1) climatically-induced changes in the amount of terrestrial biomass which alter the average carbon isotopic composition of the oceanic reservoir (Shackleton, 1977), and (2) erosion and deposition of organic-rich, continental shelf sediments during sea level fluctuations which change the mean oceanic carbon: phosphorus ratio (Broecker, 1982 doi:10.1016/0079-6611(82)90007-6). Regional gradients of delta13C are created by remineralization of organic detritus within the deep ocean itself thus reflecting the distribution of water masses and modern thermohaline flow. Changes in a single geological record of benthic foraminiferal delta13C can result from any combination of these global and abyssal circulation effects. By sampling a large number of cores collected over a wide bathymetric range yet confined to a small geographical region we have minimized the ambiguity. We can assume that each delta13C record was equally affected by global causes of delta13C variation. The differences seen between the delta13C records must, therefore, reflect changes in the distribution of delta13C in the deep ocean. We interpret these differences in distribution in terms of changes in the ocean's abyssal circulation. Benthic foraminiferal carbon isotopic evidence from a suite of Sierra Leone Rise cores indicates that the deeper parts of the eastern Atlantic basins underwent a reduction in [O2] during the maximum of the last glaciation. Reduced advection of O2-rich deep water through low-latitude fracture zones, associated with increased delivery of organic matter to the deep ocean, lowered the delta13C of deep water SumCO2 at all depths below the sill separating the eastern and western Atlantic basins (Metcalf et al., 1964 doi:10.1016/0011-7471(64)91078-2). This decreased advection into the eastern Atlantic Ocean coincides with the overall decrease in deep water production in the North Atlantic during the last glacial maximum (Curry and Lohmann, 1982 doi:10.1016/0033-5894(82)90071-0; Boyle and Keigwin, 1982 doi:10.1126/science.218.4574.784; Schnitker, 1979 doi:10.1016/0377-8398(79)90020-3; Streeter and Shackleton, 1979 doi:10.1126/science.203.4376.168).
Resumo:
The first data on content of inorganic reduced sulfur compounds [H2S, S°, S2O3(2-), SO3(2-)] were obtained at two stations in the northeastern Levant Sea (Mediterranean Basin). With lower detection limit for the mentioned sulfur forms of 30 nM, sulfide forms were not found, while thiosulfate concentration varied from 178 to 890 nM (from 24 to 78 % of total reduced S), and S° varied from 156 to 1090 nM. Vertical distribution of these compounds showed irregular character; correlation between total reduced S maxima, fluorescence, and increase of nutrient element content near the lower pycnocline boundary was observed. The maximum total sulfur concentration in the surface layer was likely due an anthropogenic influence. The ''starting'' mechanism that controls appearance and distribution of sulfur compounds in oxygen-containing water is the process of bacterial sulfate reduction in micropatches of fresh organic detritus. Reduced sulfur forms participate further in a series of chemical and biochemical processes. Contribution of hydrolysis of organic sulfur-containing compounds is insignificant for the region in study.
Resumo:
Speciation of Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd was studied in 52 samples of bottom sediments collected during Cruise 49 of the R/V "Dmitry Mendeleev" to the estuaries of the Ob and Yenisei rivers and to the southwest Kara Sea. Immediately after sampling the samples were subjected to on-board consecutive extraction to separate metal species according to their modes of occurrence in the sediments: (1) adsorbed, (2) amorphous Fe-Mn hydroxides and related metals, (3) organic + sulfide, and (4) residual, or lithogenic. Atomic absorption spectroscopy of the extracts was carried out at a stationary laboratory. Distribution of Fe, Zn, Cu, Co, Ni, Cr, Pb, and Cd species is characterized by predominance of lithogenic or geochemically inert modes (70-95% of bulk contents), in which the metals are bound in terrigenous and clastic mineral particles and organic detritus. About half of total Mn amount and 15-30% of Zn and Cu are contained in geochemically mobile modes. Spatiotemporal variations in proportions of the metal species in the surface layer of sediments along sub-meridional sections and through vertical sections of bottom sediment cores testify that Mn and, to a lesser extent, Cu are the most sensitive to changes in sedimentation environment. The role of their geochemically mobile species notably increases under reducing conditions.
Resumo:
The results of an investigation of tintinnids from the western Arabian Sea are described. A total of 134 closing-net samples was obtained from 22 stations of the German "Meteor" expedition 1964/1965. Distribution charts of the dominant species of tintinnids from the study area are presented as well as a list of the world-wide distribution of these species as derived from the literature. Tintinnids were most abundant in the surface waters. The layer from 0 - 25 m yielded a maximum 94.3% and a minimum of 61.3% of the tintinnids present from 0 - 175 m; the mean was 80%. There was no significant difference in the vertical distribution between day and night stations nor was there any indication of the influence of the thermocline upon vertical distribution of tintinnids. TS-diagrams show different water types in the western Arabian Sea. Temperatur-salinity-tintinnid -diagrams indicate regional patterns in the distribution of various species of tintinnids. Some tintinnids can be used as indicator species: Climacocylis scalaria, Parundella lohmanni and Amphorella amphora were typical for the Somali Current whereas Rhabdonella apophysata and Branditella palliata indicated the presence of East African Coastal Current water. The concentration of tintinnids in the upper 25 m raged between 4,800 and 39,300 individuals/m**3 (mean 19,000/m**3). Plasma volume of tintinnids was calculated to permit comparison of different links in the food chain. There was a mean of 51 mm**3/m**2 in the upper layer, equivalent to a concentration of 2 mm**3/m**3. Carbon values were computed from the plasma volume of tintinnids, phytoplankton and larger zooplankton. The ratio of phytoplankton plus microzooplankton carbon to large zooplankton carbon was 1 : 0.8 in the Somali Current, 1 : 0.4 in the East African Coastal Current and 1 : 1.2 in the mixing zone of these current systems. Tintinnids are one of the first links in the food chain. It is very likely that a part of the organic detritus and of the nanoplankton is transfered to large herbivores or omnivores via tintinnids and other protozoans. This mechanism might be especially effective during seasons when large phytoplankters are not available in the ocean.
Resumo:
Concentrations of sulfide, S°, and thiosulfate were determined in waters of the Baltic Sea. Microquantities of these compounds were observed in oxic waters. Concentration levels of reduced sulfur compounds in Baltic oxic waters were very close to levels of the Black Sea oxic zone. Thiosulfate and S° were predominate compounds in oxic water whereas sulfide was a predominant compound of Baltic waters high in hydrogen sulfide. Conclusion was made that during sedimentation in oxic waters anaerobic microorganisms along with aerobic bacteria take part in mineralization of organic matter. They exist on surfaces and in microniches of particles of organic detritus.
Resumo:
Sulfide, S°, and thiosulfate were determined in waters of the Baltic Sea. Microquantities of these compounds were observed in oxic waters. Concentration levels of reduced sulfur compounds in Baltic oxic waters were very close to levels of the Black Sea oxic zone. Thiosulfate and S° were predominate compounds in oxic water whereas sulfide was a predominant compound Baltic waters high in hydrogen sulfide. Conclusion was made that during sedimentation in oxic waters anaerobic microorganisms along with aerobic bacteria take part in mineralization of organic matter. They exist on surfaces and in microniches of particles of organic detritus.
Resumo:
Sulfide, S°, and thiosulfate were determined in waters of the Baltic Sea. Microquantities of these compounds were observed in oxic waters. Concentration levels of reduced sulfur compounds in Baltic oxic waters were very close to levels of the Black Sea oxic zone. Thiosulfate and S° were predominate compounds in oxic water whereas sulfide was a predominant compound Baltic waters high in hydrogen sulfide. Conclusion was made that during sedimentation in oxic waters anaerobic microorganisms along with aerobic bacteria take part in mineralization of organic matter. They exist on surfaces and in microniches of particles of organic detritus.
Resumo:
Baltic sediments have been studied by Behrens, Munthe, Küppers, Spethmann, Apstein, Sjöstedt, Pratje and the writer. The following types of sediments have been observed: varved and non-varved late-glacial clays, gray and black, post-glacial muds, and sands. The organic content of late-glacial clays ordinarily is less than 1.3 per cent, and of post-glacial muds more than 3 per cent. Sediments containing intermediate quantities are scarce. This can be explained as a result of the changed balance between organic and inorganic sedimentation when the glacial period ended; the abundance of fresh detritus then suddenly ceased and inorganic sedimentation became very much slower than before; consequently, the relative amount of organic detritus increased. As most of the material was not subjected to biological analysis, it has not been possible to distinguish different ages among post-glacial sediments.
Resumo:
The study of vertical distribution of Mo, V, Co, Ni, and Cu in mass of Black Sea sediments showed that maximum concentrations occur in sapropelic muds of ancient Black Sea deposits. A special study of sapropels samples showed a sufficiently clear correlation of Cu, Ni, Mo, and V contents with organic carbon contents; Co contents do not show such a correlation, but show one with contents of pyrite sulfur. A study of fractions of bitumen, free humic and fulvic acids showed that some part of metal contents in the sediments is bound with organic matter. It is shown that increased concentrations of trace elements in sapropels result from removing of dissolved metals from seawater by organic detritus during deposition on the bottom, in vivo concentration of metals in plankton organisms is of secondary importance.
Resumo:
Selected core samples from the California Continental Borderland (Sites 467-469) were analyzed to evaluate the nature and composition of the lipids and kerogens in terms of their genetic origin and geological maturity. The lipids were of a multiple origin. On the basis of the homolog distributions of the n-alkanes and n-fatty acids, with the shape and magnitude of the unresolved branched and cyclic hydrocarbons, and the structural and stereochemical compositions of the molecular markers, these lipids were derived from primary autochthonous marine (microbial), from allochthonous terrigenous (higher plant wax), and from recycled (geologically mature organic matter) sources. The kerogens were composed of principally marine microbial detritus with a minor input of allochthonous terrestrial material. For the most part, the samples had undergone a thermal maturation according to a normal geothermal gradient, except in the proximity of intrusives. Such additional thermal stress was evident for the samples from Site 469 and to some extent for Site 467 at about a sub-bottom depth of 700 to 800 meters.