64 resultados para Optimistic data replication system
em Publishing Network for Geoscientific
Resumo:
Historical, i.e. pre-1957, upper-air data are a valuable source of information on the state of the atmosphere, in some parts of the World back to the early 20th century. However, to date reanalyses have only partially made use of these data, and only of observations made after 1948. Even for the period between 1948 (the starting year of the NCEP/NCAR reanalysis) and the International Geophysical Year in 1957 (the starting year of the ERA-40 reanalysis), when the global upper-air coverage reached more or less its current status, many observations have not been digitised until now. The Comprehensive Historical Upper-Air Network (CHUAN) already compiled a large collection of pre-1957 upper-air data. In the framework of the European project ERA-CLIM, significant amounts of additional upper-air data have been catalogued (> 1.3 mio station days), imaged (> 200,000 images) and digitised (> 700,000 station days) in order to prepare a new input dataset for upcoming reanalyses. The records cover large parts of the globe, focussing on so far less well covered regions such as the Tropics, the polar regions and the Oceans, and on very early upper-air data from Europe and the US. The total number of digitised/inventoried records is 61/101 for moving upper-air data, i.e. data from ships etc., and 735/1,783 for fixed upper-air stations. Here, we give a detailed description of the resulting dataset including the metadata and the quality checking procedures applied. The data will be included in the next version of CHUAN.
Resumo:
The CMCC Global Ocean Physical Reanalysis System (C-GLORS) is used to simulate the state of the ocean in the last decades. It consists of a variational data assimilation system (OceanVar), capable of assimilating all in-situ observations along with altimetry data, and a forecast step performed by the ocean model NEMO coupled with the LIM2 sea-ice model. KEY STRENGTHS: - Data are available for a large number of ocean parameters - An extensive validation has been conducted and is freely available - The reanalysis is performed at high resolution (1/4 degree) and spans the last 30 years KEY LIMITATIONS: - Quality may be discontinuos and depend on observation coverage - Uncertainty estimates are simply derived through verification skill scores
Resumo:
Paleomagnetic studies conducted on board JOIDES Resolution during Leg 119 indicate that the cores collected at Site 744 range from Quaternary through Eocene in age. Initial studies of the sediments completed on board the ship measured the magnetization of the archive halves of the sedimentary cores, using the pass-through cryogenic magnetometer. Stratigraphic plots of the declination and inclination derived from these measurements displayed numerous long intervals with essentially constant magnetic directions. Further study of these intervals led to a discovery that the background signal had been incorrectly computed due to faulty software on the ship. Because this background signal was not recorded in the data-processing system, corrections could not be made. Therefore, subsequent shorebased studies have been made on the individual samples collected at approximately 30-cm intervals in the cores in order to verify the initial magnetostratigraphy reported in the Initial Reports volume for Leg 119 (Barron, Larsen, et al., 1989, doi:10.2973/odp.proc.ir.119.1989). Numerous reversals were identified and correlations were suggested with the seafloor magnetic anomaly sequence of Berggren et al. (1985, doi:10.1130/0016-7606(1985)96<1407:CG>2.0.CO;2) back to anomaly number 17.