58 resultados para Optically stimulated luminescence(OSL)
em Publishing Network for Geoscientific
Resumo:
Calmette Bay within Marguerite Bay along the western side of the Antarctic Peninsula contains one of the most continuous flights of raised beaches described to date in Antarctica. Raised beaches extend to 40.8 m above sea level (masl) and are thought to reflect glacial isostatic adjustment due to the retreat of the Antarctic Peninsula Ice Sheet. Using optically stimulated luminescence (OSL), we dated quartz extracts from cobble surfaces buried in raised beaches at Calmette Bay. The beaches are separated into upper and lower beaches based on OSL ages, geomorphology, and sedimentary fabric. The two sets of beaches are separated by a prominent scarp. One of our OSL ages from the upper beaches dates to 9.3 thousand years ago (ka; as of 1950) consistent with previous extrapolation of sea-level data and the time of ice retreat from inner Marguerite Bay. However, four of the seven ages from the upper beaches date to the timing of glaciation. We interpret these ages to represent reworking of beaches deposited prior to the Last Glacial Maximum (LGM) by advancing and retreating LGM ice. Ages from the lower beaches record relative sea-level fall due to Holocene glacial-isostatic adjustment. We suggest a Holocene marine limit of 21.7 masl with an age of 5.5-7.3 ka based on OSL ages from Calmette Bay and other sea-level constraints in the area. A marine limit at 21.7 masl implies half as much relative sea-level change in Marguerite Bay during the Holocene as suggested by previous sea-level reconstructions. No evidence for a relative sea-level signature of neoglacial events, such as a decrease followed by an increase in RSL fall due to ice advance and retreat associated with the Little Ice Age, is found within Marguerite Bay indicating either: (1) no significant neoglacial advances occurred within Marguerite Bay; (2) rheological heterogeneity allows part of the Antarctic Peninsula (i.e. the South Shetland Islands) to respond to rapid ice mass changes while other regions are incapable of responding to short-lived ice advances; or (3) the magnitude of neoglacial events within Marguerite Bay is too small to resolve through relative sea-level reconstructions. Although the application of reconstructing sea-level histories using OSL-dated raised beach deposits provides a better understanding of the timing and nature of relative sea-level change in Marguerite Bay, we highlight possible problems associated with using raised beaches as sea-level indices due to post-depositional reworking by storm waves.
Resumo:
Four seismic surveys and a stratigraphic record from southernmost Patagonia (Argentina) based on 51 AMS-14C dates obtained in the framework of ICDP expedition 5022 "Potrok Aike Maar Lake Sediment Archive Drilling Project" (PASADO) provide a database to compare the 106 m composite profile from the lake centre with piston cores from the littoral and outcrops in the catchment area. Based on event correlation using distinct volcanic ash layers with unique geochemical composition and optically stimulated luminescence (OSL) dates on feldspars, sediment records are firmly linked. This approach allows to match the sediment record with water levels during the past ca. 49 ka providing evidence for lake level variations. Reconstructed lake levels were 20 m higher than today during the last Glacial until the early Holocene. With the migration of the Southern Hemispheric Westerlies over this site the lake level dropped ca. 55 m for a period of two millennia. Thereupon the water balance was more positive again causing a stepwise rise of the lake level until the maximum was reached during the Little Ice Age with a subsequent lowering since the 20th century. We suggest that the mid- to late-Holocene lake level variation is caused by intensity changes of the Southern Hemispheric Westerlies.
Resumo:
Most current methods of reconstructing past sea levels within Antarctica rely on radiocarbon dating. However, radiocarbon dating is limited by the availability of material for dating and problems inherent with radiocarbon reservoirs in Antarctic marine systems. Here we report on the success of a new approach to dating raised beach deposits in Antarctica for the purpose of reconstructing past sea levels. This new approach is the use of optically stimulated luminescence (OSL) on quartz-grains obtained from the underside of cobbles within raised beaches and boulder pavements. We obtained eight OSL dates from three sites along the shores of Maxwell Bay in the South Shetland Islands of the Antarctic Peninsula. These dates are internally consistent and fit well with previously published radiocarbon ages obtained from the same deposits. In addition, when the technique was applied to a modern beach, it resulted in an age of zero. Our results suggest that this method will provide a valuable tool in the reconstruction of past sea levels in Antarctica and other coarse-grained beach deposits across the globe.
Resumo:
The Arkhangelsk area lies in the region that was reached by the northeastern flank of the Scandinavian ice sheet during the last glaciation. Investigations of Late Pleistocene sediments show interglacial terrestrial and marine conditions with sea level up to 52 m above the present level. An unconformity in the stratigraphy suggests a hiatus representing the Early Valdaian (Weichselian) and the beginning of the Middle Valdaian. This unconformity could be related to a low base level and isostatic depression of the area north of Arkhangelsk, either caused by ice masses advancing from the Kara and Barents ice sheets and/or to Scandinavian ice over the Kola Peninsula. During Middle Valdaian, from c. 66 ka BP, until the advance of the Late Valdaian glacier, c. 17-16 ka BP, peat formation, and northward fluvial sedimentation occurred coexisting with permafrost conditions in a later phase. Before the glacier advance, the base level rose and thick vertical accumulations of fluvial sediments were formed. Associated with this glacier advance from the north-northwest, ice damming occurred. Fluvial drainage was opposite to the present drainage pattern and deposition appeared in glaciolacustrine ponds in the area outside the limit of the glaciation. After the deglaciation that started c. 15 ka BP, permafrost conditions and downwasting of buried stagnant glacier ice prevailed until at least 10.7 ka BP.
Resumo:
The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non-glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12 km offshore and 77 m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (14C-AMS, OSL on quartz, IR-OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64 m below modern sea level 12 km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice-wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost.
Resumo:
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90-110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75-95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65-75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55-75 ka BP. The Barents-Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10-20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.
Resumo:
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.