36 resultados para Optical images.
em Publishing Network for Geoscientific
Resumo:
The Aral Sea is located in an arid region with much sand and salt deposits in the surrounding barren open land. Hence, significant displacements of sediments into the lakebed by the action of wind, water, gravity, or snow are likely. The bathymetry of the lake was last observed in the 1960s, and within the last half century, the structure of the lakebed has changed. Based on satellite observations of the temporal changes of shoreline (Landsat optical remote sensing) and water level (multi-mission satellite altimetry) over more than one decade an updated bathymetric chart for the East Basin of the Aral Sea has been generated. During this time, the geometry of the shallow East Basin experienced strong fluctuations due to the occurrence of periods of drying and strong inflow. By the year 2014 the East Basin fell dry. The dynamic behavior of the basin allowed for estimating the lake's bathymetry from a series of satellite-based information. The river mouth made its impression in the present East Aral Sea, because its shrinking led to the inflow of much sediment into the lake's interior. In addition, salt deposits along the shorelines increased the corresponding elevation, a phenomenon that is more pronounced in the reduced lakebed because of increased salinity. It must be noted that height estimates from satellite altimetry were only possible down to a minimum elevation of 27 m above sea level due to a lack of reliable altimetry data over the largely reduced water surface. In order to construct a complete bathymetric chart of the lakebed of the East Aral Sea heights below 27 m were obtained solely from Landsat optical images following the SRB (Selected Region Boundary) approach as described by Singh et al. (2015).
Resumo:
Near-bottom zooplankton communities have rarely been studied despite numerous reports of high zooplankton concentrations, probably due to methodological constraints. In Kongsfjorden, Svalbard, the near-bottom layer was studied for the first time by combining daytime deployments of a remotely operated vehicle (ROV), the optical zooplankton sensor moored on-sight key species investigation (MOKI), and Tucker trawl sampling. ROV data from the fjord entrance and the inner fjord showed high near-bottom abundances of euphausiids with a mean concentration of 17.3 ± 3.5 n/100 m**3. With the MOKI system, we observed varying numbers of euphausiids, amphipods, chaetognaths, and copepods on the seafloor at six stations. Light-induced zooplankton swarms reached densities in the order of 90,000 (euphausiids), 120,000 (amphipods), and 470,000 ind/m**3 (chaetognaths), whereas older copepodids of Calanus hyperboreus and C. glacialis did not respond to light. They were abundant at the seafloor and 5 m above and showed maximum abundance of 65,000 ind/m**3. Tucker trawl data provided an overview of the seasonal vertical distribution of euphausiids. The most abundant species Thysanoessa inermis reached near-bottom concentrations of 270 ind/m**3. Regional distribution was neither related to depth nor to location in the fjord. The taxa observed were all part of the pelagic community. Our observations suggest the presence of near-bottom macrozooplankton also in other regions and challenge the current view of bentho-pelagic coupling. Neglecting this community may cause severe underestimates of the stock of elagic zooplankton, especially predatory species, which link secondary production with higher trophic levels.