4 resultados para Opponent colors
em Publishing Network for Geoscientific
Resumo:
Sedimentological and biostratigraphic investigations of 15 cores (total length: 88 m) from the vicinity of Great Meteor seamount (about 30° N, 28° W) showed that the calcareous ooze are asymmetrically distributed around the seamount and vertically differentiated into two intervals. East and west of the seampunt, the upper "A"-interval is characterized by yellowish-brown sediment colors and bioturbation; ash layers and diatoms are restricted to the eastern cores. On both seamount flanks, the sediment of the lower "B"-interval are white and very rich in CaCO3 with a major fine silt (2-16 µ) mode (mainly coccoliths). Lamination, manganese micronodules, Tertiary foraminifera and discoasters, and small limestone and basalt fragments are typical of the "B"-interval of the eastern cores only. The sediments contain abundant displaced material which was reworked from the upper parts of the seamount. The sedimentation around the seamount is strongly influenced by the kind of displaced material and the intensity of its differentiated dispersal: the sedimentation rates are generally higher on the east than on the west flank /e.g. in "B": 0.9 cm/1000 y in the W; 3.1 cm/1000 y in the E), and lower for the "A" than for the "B"-interval. The lamination is explained by the combination of increased sedimentation rates with a strong input of material poor in organic carbon producing a hostile environment for benthic life. The CaCO3 content of the core is highly influenced by the proportion of displaced bigenous carbonate material (mainly coccoliths). The genuine in-situ conditions of the dissolution facies are only reflected by the minimum CaCO3 values of the cores (CCD = about 5,500 m; first bend in dissolution curve = 4,000 m; ACD = about 3,400 m). The preservation of the total foraminiferal association depends on the proportions of in-situ versus displaced specimens. In greater water depths (stronger dissolution), for example, the preservation can be improved by the admixture of relatively well preserved displaced foraminifera. Carbonate cementation and the formation of manganese micronodules are restricted to microenvironments with locally increased organic carbon contents (e.g. pellets; foraminifera). The ash layers consist of redeposited, silicic volcanic glass of trachytic composition and Mio-Pliocene age; possibly, they can be derived from the upper part of the seamount. Siliceous organisms, especially diatoms, are frequent close to the ash layers and probably also redeposited. Their preservation was favoured by the increase of the SiO2 content in the pore water caused by the silicic volcanic glass. The cores were biostraftsraphically subdivided with the aid of planktonic foraminifera and partly alsococcoliths. In most cases, the biostratigraphically determined cold- and warm sections could be correlated from core to core. Almost all cores do not penetrate the Late Pleistocene. All Tertiary fossils are reworked. In general, the warm/cold boundary W2/C2 corresponds with the lithostratigraphic A/B boundray. Benthonic foraminifera indicate the original site deposition of the displaced material (summit plateau or flanks of the seamount). The asymmetric distribution of the sediments around the seamount east and west of the NE-directed antarctic bottom current (AABW) is explained by the distortion of the streamlines by the Coriolis force; by this process the current velocity is increased west of the seamount and decreased east of it. The different proportion of displaced material within the "A" and "B" interval is explained by changes of the intensity of the oceanic circulation. At the time of "B" the flow of the AABW around the seamount was stronger than during "A"; this can be inferred from the presence of characteristic benthonic foraminifera. The increased oceanic circulation implies an enhanced differentiation of the current velocities, and by that, also of the sedimentation rates, and intensifies the winnowed sediment material was transported downslope by turbid layers into the deep-sea, incorporated into the current system of the AABW, and asymmetrically deposited around the seamount.
Resumo:
Modal compositions of volcaniclastic sands recovered on Leg 126 of the Ocean Drilling Project (Izu-Bonin island arc and Sumisu Rift) are similar to those from other intraoceanic island arcs and associated marginal basins. These sands are dominantly composed of volcanic-lithic and plagioclase-feldspar grains derived from the Izu-Bonin magmatic arc and intrarift volcanoes. The glass color of volcanic fragments ranges from black (tachylite) to brown to colorless; individual samples usually contain a mixture of glass colors. Two of the forearc sites (792 and 793) are more heterogeneous with respect to glass color than the backarc/Sumisu Rift sites (788, 790, and 791). Site 787 forearc sands are dominantly composed of tachylite grains; their unique composition may be attributed either to winnowing by submarine-canyon currents or to a volcanic island source. There is an increase in the proportions of pumice/colorless glass, felsitic grains, and quartz within sediments of the incipient backarc basin (Sumisu Rift), as compared with the forearc-basin sites.
Resumo:
The video FireMovie_2000-2011.avi shows an animation with all MODIS fire product maps of the area sequenced over time. Colors in the video describe MODIS classes as follows: MODIS classification and color scale: Class 0 - not processed - Dark blue (1 frame) Class 3 - water - Light Blue (rivers and some lakes) Class 4 - clouds - Green blue Class 5 - non fire land - Yellow green Class 8 - nominal confidence fire - Red Class 9 - high confidence fire - Dark red