9 resultados para Of the image Lula

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wadden Sea is located in the southeastern part of the North Sea forming an extended intertidal area along the Dutch, German and Danish coast. It is a highly dynamic and largely natural ecosystem influenced by climatic changes and anthropogenic use of the North Sea. Changes in the environment of the Wadden Sea, natural or anthropogenic origin, cannot be monitored by the standard measurement methods alone, because large-area surveys of the intertidal flats are often difficult due to tides, tidal channels and unstable underground. For this reason, remote sensing offers effective monitoring tools. In this study a multi-sensor concept for classification of intertidal areas in the Wadden Sea has been developed. Basis for this method is a combined analysis of RapidEye (RE) and TerraSAR-X (TSX) satellite data coupled with ancillary vector data about the distribution of vegetation, mussel beds and sediments. The classification of the vegetation and mussel beds is based on a decision tree and a set of hierarchically structured algorithms which use object and texture features. The sediments are classified by an algorithm which uses thresholds and a majority filter. Further improvements focus on radiometric enhancement and atmospheric correction. First results show that we are able to identify vegetation and mussel beds with the use of multi-sensor remote sensing. The classification of the sediments in the tidal flats is a challenge compared to vegetation and mussel beds. The results demonstrate that the sediments cannot be classified with high accuracy by their spectral properties alone due to their similarity which is predominately caused by their water content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has been carried out as part of "Programma Nazionale di Ricerche in Antartide" and was supported financially be ENEA through a joint reasearch-program on Antarctic Earth Science with the University of Siena (Italy). The geopmorphological and glaciological research, of which this work forms a part, is coordinated by Prof. Giuseppe Grombelli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the Neogene (Miocene to Holocene) stratigraphic record on the glaciated Atlantic margin of NW Europe has, to date, largely been undertaken on an ad-hoc basis. Whereas a systematic approach to understanding the stratigraphic development of Palaeogene and older strata has been undertaken in areas such as the North Sea, West of Shetland and Norway, the problem of establishing a Neogene framework has been only partly addressed by academia and the oil industry. In most cases where a Neogene stratigraphy has been constructed, this has been largely in response to problem solving and risk assessment in a restricted area. Nevertheless, in the past few years it has become increasingly apparent that there is a common history in the Neogene development of the passive Atlantic margin of NW Europe, between mid-Norway and SW Ireland. The inspection and interpretation of an extensive geophysical and geological database has identified several regionally significant and correlatable unconformities along this continental margin. Thus, a regional approach to the stratigraphical development of the Neogene succession on the glaciated European Atlantic margin is undertaken in this volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerial observations of light pollution can fill an important gap between ground based surveys and nighttime satellite data. Terrestrially bound surveys are labor intensive and are generally limited to a small spatial extent, and while existing satellite data cover the whole world, they are limited to coarse resolution. This paper describes the production of a high resolution (1 m) mosaic image of the city of Berlin, Germany at night. The dataset is spatially analyzed to identify themajor sources of light pollution in the city based on urban land use data. An area-independent 'brightness factor' is introduced that allows direct comparison of the light emission from differently sized land use classes, and the percentage area with values above average brightness is calculated for each class. Using this methodology, lighting associated with streets has been found to be the dominant source of zenith directed light pollution (31.6%), although other land use classes have much higher average brightness. These results are compared with other urban light pollution quantification studies. The minimum resolution required for an analysis of this type is found to be near 10 m. Future applications of high resolution datasets such as this one could include: studies of the efficacy of light pollution mitigation measures, improved light pollution simulations, economic and energy use, the relationship between artificial light and ecological parameters (e.g. circadian rhythm, fitness, mate selection, species distributions, migration barriers and seasonal behavior), or the management of nightscapes. To encourage further scientific inquiry, the mosaic data is freely available at Pangaea.