25 resultados para Ocean County (N.J.)--Maps.
em Publishing Network for Geoscientific
Resumo:
Large-scale studies of ocean biogeochemistry and carbon cycling have often partitioned the ocean into regions along lines of latitude and longitude despite the fact that spatially more complex boundaries would be closer to the true biogeography of the ocean. Herein, we define 17 open-ocean biomes classified from four observational data sets: sea surface temperature (SST), spring/summer chlorophyll a concentrations (Chl a), ice fraction, and maximum mixed layer depth (maxMLD) on a 1° × 1° grid. By considering interannual variability for each input, we create dynamic ocean biome boundaries that shift annually between 1998 and 2010. Additionally we create a core biome map, which includes only the grid cells that do not change biome assignment across the 13 years of the time-varying biomes. These biomes can be used in future studies to distinguish large-scale ocean regions based on biogeochemical function.
Resumo:
There are about 30 species of planktonic Foraminifera, as contrasted with the more than 4200 benthic species in the oceans of the world. Most of the planktonic species belong to the families Globigerinidae and Globorotaliidae. Of the 30 species, 9 occur in Antarctic and Subantarctic waters; however, none of these cold-water species are restricted to the Southern Ocean, except possibly the newly recognized Globorotalia cavernula (Be, 1967b). These species are distributed in broad zones of similar temperature in both the Northern and Southern Hemispheres. Hence, it is not possible to refer to these species as endemic to the Antarctic or Subantarctic, although some of them do appear in very high concentrations of 10 specimens/m**3 or more in the Antarctic regions. The plankton samples upon which the accompanying maps are based were collected between 1960 and 1965 on the research vessels Eltanin of the National Science Foundation (U.S. Antarctic Research Program), and Vema and Conrad of the Lamont Geological Observatory. All surface (0 m to 10 m) and vertical (0 m to 300 m) tows were obtained with plankton nets of uniform mesh size and material (NITEX202 = 202 µm mesh-aperture width) and were provided with flowmeters for quantitative readings of amounts of water filtered.
Resumo:
Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.
Resumo:
This study subdivides the Potter Cove, King George Island, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis includes in total 42 different environmental variables, interpolated based on samples taken during Australian summer seasons 2010/2011 and 2011/2012. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared and the most reasonable method has been applied. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested and 4, 7, 10 as well as 12 were identified as reasonable numbers for clustering the Potter Cove. Especially the results of 10 and 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.
Resumo:
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.
Resumo:
The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 is a new digital bathymetric model (DBM) portraying the seafloor of the circum-Antarctic waters south of 60° S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Oceans (GEBCO). IBCSO Version 1.0 DBM has been compiled from all available bathymetric data collectively gathered by more than 30 institutions from 15 countries. These data include multibeam and single beam echo soundings, digitized depths from nautical charts, regional bathymetric gridded compilations, and predicted bathymetry. Specific gridding techniques were applied to compile the DBM from the bathymetric data of different origin, spatial distribution, resolution, and quality. The IBCSO Version 1.0 DBM has a resolution of 500 x 500 m, based on a polar stereographic projection, and is publicly available together with a digital chart for printing from the project website (http://www.ibcso.org) and from the two data sets shown at the bottom of this page.
Resumo:
During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000 m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200 m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1 km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.
Resumo:
The Weddell Gyre plays a crucial role in the regulation of climate by transferring heat into the deep ocean through deep and bottom water mass formation. However, our understanding of Weddell Gyre water mass properties is limited to regions of data availability, primarily along the Prime Meridian. The aim is to provide a dataset of the upper water column properties of the entire Weddell Gyre. Objective mapping was applied to Argo float data in order to produce spatially gridded, time composite maps of temperature and salinity for fixed pressure levels ranging from 50 to 2000 dbar, as well as temperature, salinity and pressure at the level of the sub-surface temperature maximum. While the data are currently too limited to incorporate time into the gridded structure, the data are extensive enough to produce maps of the entire region across three time composite periods (2002-2005, 2006-2009 and 2010-2013), which can be used to determine how representative conclusions drawn from data collected along general RV transect lines are on a gyre scale perspective. The time composite data sets are provided as netCDF files; one for each time period. Mapped fields of conservative temperature, absolute salinity and potential density are provided for 41 vertical pressure levels. The above variables as well as pressure are provided at the level of the sub-surface temperature maximum. Corresponding mapping errors are also included in the netCDF files. Further details are provided in the global attributes, such as the unit variables and structure of the corresponding data array (i.e. latitude x longitude x vertical pressure level). In addition, all files ending in "_potTpSal" provide mapped fields of potential temperature and practical salinity.
Resumo:
The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003-2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated.
Resumo:
Distribution patterns of the most important pollen types from southern European and northwest African source areas for the 18,000 years B.P. time slice are reconstructed from pollen records of 14 well-dated deep-sea cores located between 37° and 9°N and compared with the modern pollen distribution in this area. It is concluded that the belt with maximum African Easterly Jet transport did not shift latitudinally during the last glacial-interglacial transition but remained at about 20°N. Furthermore, it is substantiated that the trade winds did not shift latitudinally during the last glacial-interglacial transition. This evidence is not compatible with an atmospheric circulation model that assumes a zone of surface westerlies in the northern part of northwest Africa. Trade winds during glacial episodes did, however, intensify, especially from about 36° to 24° N.
Resumo:
The knowledge about processes concerning perception and understanding is of paramount importance for designing means of communication like maps and charts. This is especially the case, if one does not want to lose sight of the map-user and if map-design is to be orientated along the map-users needs and preferences in order to improve the cartographic product's usability. A scientific approach to visualization can help to achieve useable results. The insights achieved by such an approach can lead to modes of visualization that are superior to those, which have seemingly proved their value in praxis - so-called "bestpractices" -, concerning their utility and efficiency. This thesis shows this by using the example of visualizing the limits of bodies of waters in the Southern Ocean. After making some introductorily remarks on the chosen mode of problem-solution in chapter one, which simultaneously illustrate the flow of work while working on the problem, in chapter two the relevant information concerning the drawing of limits in the Southern Ocean is outlined. Chapter 3 builds the theoretical framework, which is a multidisciplinary approach to representation. This theoretical framework is based on "How Maps Work" by the American Cartographer MacEachren (1995/2004). His "scientific approach to visualization" is amended and adjusted by the knowledge gained from recent findings of the social sciences where necessary. So, the approach suggested in this thesis represents a synergy of psychology, sociology, semiotics, linguistics, communication theory and cartography. It follows the tradition of interdisciplinary research getting over the boundaries of a single scientific subject. The achieved holistic approach can help to improve the usability of cartographic products. It illustrates on the one hand those processes taking place while perceiving and recognizing cartographic information - so-called bottom-up-processes. On the other hand it illuminates the processes which happen during understanding this information in so-called top-down-processes. Bottom-up- and top-down-processes are interdependent and inseparably interrelated and therefore cannot be understood without each other. Regarding aspects of usability the approach suggested in this thesis strongly focuses on the map-user. This is the reason why the phenomenon of communication gains more weight than in MacEachren's map-centered approach. Because of this, in chapter 4 a holistic approach to communication is developed. This approach makes clear that only the map-user can evaluate the usability of a cartographic product. Only if he can extract the information relevant for him from the cartographical product, it is really useable. The concept of communication is well suited to conceive that. In case of the visualization of limits of bodies of water in the Southern Ocean, which is not complex enough to illustrate all results of the theoretical considerations, it is suggested to visualize the limits with red lines. This suggestion deviates from the commonly used mode of visualization. So, this thesis shows how theory is able to ameliorate praxis. Chapter 5 leads back to the task of fixing limits of the bodies of water in the area of concern. A convention by the International Hydrographic Organization (IHO) states that those limits should be drawn by using meridians, parallels, rhumb lines and bathymetric data. Based on the available bathymetric data both a representation and a process model are calculated, which should support the drawing of the limits. The quality of both models, which depends on the quality of the bathymetric data at hand, leads to the decision that the representation model is better suited to support the drawing of limits.
Resumo:
Introduction: Chemical composition of water determines its physical properties and character of processes proceeding in it: freezing temperature, volume of evaporation, density, color, transparency, filtration capacity, etc. Presence of chemical elements in water solution confers waters special physical properties exerting significant influence on their circulation, creates necessary conditions for development and inhabitance of flora and fauna, and imparts to the ocean waters some chemical features that radically differ them from the land waters (Alekin & Liakhin, 1984). Hydrochemical information helps to determine elements of water circulation, convection depth, makes it easier to distinguish water masses and gives additional knowledge of climatic variability of ocean conditions. Hydrochemical information is a necessary part of biological research. Water chemical composition can be the governing characteristics determining possibility and limits of use of marine objects, both stationary and moving in sea water. Subject of investigation of hydrochemistry is study of dynamics of chemical composition, i.e. processes of its formation and hydrochemical conditions of water bodies (Alekin & Liakhin 1984). The hydrochemical processes in the Arctic Ocean are the least known. Some information on these processes can be obtained in odd publications. A generalizing study of hydrochemical conditions in the Arctic Ocean based on expeditions conducted in the years 1948-1975 has been carried out by Rusanov et al. (1979). The "Atlas of the World Ocean: the Arctic Ocean" contains a special section "Hydrochemistry" (Gorshkov, 1980). Typical vertical profiles, transects and maps for different depths - 0, 100, 300, 500, 1000, 2000, 3000 m are given in this section for the following parameters: dissolved oxygen, phosphate, silicate, pH and alkaline-chlorine coefficient. The maps were constructed using the data of expeditions conducted in the years 1948-1975. The illustrations reflect main features of distribution of the hydrochemical elements for multi-year period and represent a static image of hydrochemical conditions. Distribution of the hydrochemical elements on the ocean surface is given for two seasons - winter and summer, for the other depths are given mean annual fields. Aim of the present Atlas is description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical information for the years 1948-2000 and using the up-to-date methods of analysis and electronic forms of presentation of hydrochemical information. The most wide-spread characteristics determined in water samples were used as hydrochemical indices. They are: dissolved oxygen, phosphate, silicate, pH, total alkalinity, nitrite and nitrate. An important characteristics of water salt composition - "salinity" has been considered in the Oceanographic Atlas of the Arctic Ocean (1997, 1998). Presentation of the hydrochemical characteristics in this Hydrochemical Atlas is wider if compared with that of the former Atlas (Gorshkov, 1980). Maps of climatic distribution of the hydrochemical elements were constructed for all the standard depths, and seasonal variability of the hydrochemical parameters is given not only for the surface, but also for the underlying standard depths up to 400 m and including. Statistical characteristics of the hydrochemical elements are given for the first time. Detailed accuracy estimates of initial data and map construction are also given in the Atlas. Calculated values of mean-root deviations, maximum and minimum values of the parameters demonstrate limits of their variability for the analyzed period of observations. Therefore, not only investigations of chemical statics are summarized in the Atlas, but also some elements of chemical dynamics are demonstrated. Digital arrays of the hydrochemical elements obtained in nodes of a regular grid are the new form of characteristics presentation in the Atlas. It should be mentioned that the same grid and the same boxes were used in the Atlas, as those that had been used by creation of the US-Russian climatic Oceanographic Atlas. It allows to combine hydrochemical and oceanographic information of these Atlases. The first block of the digital arrays contains climatic characteristics calculated using direct observational data. These climatic characteristics were not calculated in the regions without observations, and the information arrays for these regions have gaps. The other block of climatic information in a gridded form was obtained with the help of objective analysis of observational data. Procedure of the objective analysis allowed us to obtain climatic estimates of the hydrochemical characteristics for the whole water area of the Arctic Ocean including the regions not covered by observations. Data of the objective analysis can be widely used, in particular, in hydrobiological investigations and in modeling of hydrochemical conditions of the Arctic Ocean. Array of initial measurements is a separate block. It includes all the available materials of hydrochemical observations in the form, as they were presented in different sources. While keeping in mind that this array contains some amount of perverted information, the authors of the Atlas assumed it necessary to store this information in its primary form. Methods of data quality control can be developed in future in the process of hydrochemical information accumulation. It can be supposed that attitude can vary in future to the data that were rejected according to the procedure accepted in the Atlas. The hydrochemical Atlas of the Arctic Ocean is the first specialized and electronic generalization of hydrochemical observations in the Arctic Ocean and finishes the program of joint efforts of Russian and US specialists in preparation of a number of atlases for the Arctic. The published Oceanographic Atlas (1997, 1998), Atlas of Arctic Meteorology and Climate (2000), Ice Atlas of the Arctic Ocean prepared for publication and Hydrochemical Atlas of the Arctic Ocean represent a united series of fundamental generalizations of empirical knowledge of Arctic Ocean nature at climatic level. The Hydrochemical Atlas of the Arctic Ocean was elaborated in the result of joint efforts of the SRC of the RF AARI and IARC. Dr. Ye. Nikiforov was scientific supervisor of the Atlas, Dr. R. Colony was manager on behalf of the USA and Dr. L. Timokhov - on behalf of Russia.