2 resultados para OXY-FUEL COMBUSTION

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing atmospheric pCO2 reduces the saturation state of seawater with respect to the aragonite, high-Mg calcite (Mg/Ca > 0.04), and low-Mg calcite (Mg/Ca < 0.04) minerals from which marine calcifiers build their shells and skeletons. Notably, these polymorphs of CaCO3 have different solubilities in seawater: aragonite is more soluble than pure calcite, and the solubility of calcite increases with its Mg-content. Although much recent progress has been made investigating the effects of CO2-induced ocean acidification on rates of biological calcification, considerable uncertainties remain regarding impacts on shell/skeletal polymorph mineralogy. To investigate this subject, eighteen species of marine calcifiers were reared for 60-days in seawater bubbled with air-CO2 mixtures of 409 ± 6, 606 ± 7, 903 ± 12, and 2856 ± 54 ppm pCO2, yielding aragonite saturation states of 2.5 ± 0.4, 2.0 ± 0.4, 1.5 ± 0.3, and 0.7 ± 0.2. Calcite/aragonite ratios within bimineralic calcifiers increased with increasing pCO2, but were invariant within monomineralic calcifiers. Calcite Mg/Ca ratios (Mg/CaC) also varied with atmospheric pCO2 for two of the five high-Mg-calcite-producing organisms, but not for the low-Mg-calcite-producing organisms. These results suggest that shell/skeletal mineralogy within some-but not all-marine calcifiers will change as atmospheric pCO2 continues rising as a result of fossil fuel combustion and deforestation. Paleoceanographic reconstructions of seawater Mg/Ca, temperature, and salinity from the Mg/CaC of well-preserved calcitic marine fossils may also be improved by accounting for the effects of paleo-atmospheric pCO2 on skeletal Mg-fractionation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of the stable isotopic composition (dD(H2) or dD) of atmospheric molecular hydrogen (H2) are a useful addition to mixing ratio (X(H2)) measurements for understanding the atmospheric H2 cycle. dD datasets published so far consist mostly of observations at background locations. We complement these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated region of the Netherlands. Our measurements show a large anthropogenic influence on the local H2 cycle, with frequently occurring pollution events that are characterized by X(H2) values that reach up to 1 ppm and low dD values. An isotopic source signature analysis yields an apparent source signature below -400 per mil, which is much more D-depleted than the fossil fuel combustion source signature commonly used in H2 budget studies. Two diurnal cycles that were sampled at a suburban site near London also show a more D-depleted source signature (-340 per mil), though not as extremely depleted as at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly depleted apparent source signature at Cabauw requires additional explanation; microbial H2 production seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found no decrease in (H2) at lower sampling levels (20 and 60m) with respect to higher sampling levels (120 and 200m). There was a significant shift to lower median dD values at the lower levels. This confirms the limited role of soil uptake around Cabauw, and again points to microbial H2 production during an extended growing season, as well as to possible differences in average fossil fuel combustion source signature between the different footprint areas of the sampling levels. So, although knowledge of the background cycle of H2 has improved over the last decade, surprising features come to light when a non-background location is studied, revealing remaining gaps in our understanding.