56 resultados para ORGANISMS
em Publishing Network for Geoscientific
Resumo:
Biogeochemical behavior of a group of heavy metals and metalloids in water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary (Obskaya Guba) - Kara Sea section on the basis of data obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September-October 2007. Changes in ratios of dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as growth of adsorbed fractions of the elements in near-bottom suspended matter under mixing of riverine and marine waters. Features of chemical element accumulation in typical benthic organisms of the Obskaya Guba and the Kara Sea were revealed, and their concentrating factors were calculated based on specific conditions of the environment. It was shown that shells of bivalves possessing higher biomass compared to other groups of organisms in the Obskaya Guba play an important role in deposition of heavy metals. In the Obskaya Guba mollusks accumulate Cd and Pb at the background level, whereas Cu and Zn contents appear to be higher than the background level.
Resumo:
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be "inherited" from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.
Resumo:
Oxygen and carbon isotope analyses have been carried out on calcareous skeletons of important recent groups of organisms. Annual temperature ranges and distinct developmental stages can be reconstructed from single shells with the aid of the micro-sampling technique made possible by modern mass-spectrometers. This is in contrast to the results of earlier studies which used bulk sampIes. The skeletons analysed are from Bermuda, the Philippines, the Persian Gulf and the continental margin off Peru. In these environments, seasonal salinity ranges and thus annual variations in the isotopic composition of the water are small. In addition, environmental parameters are weIl documented in these areas. The recognition of seasonal isotopic variations is dependant on the type of calcification. Shells built up by carbonate deposition at the margin, such as molluscs, are suitable for isotopic studies. Analysis is more difficult where chambers are added at the margin of the shell but where older chambers are simultaneously covered by a thin veneer of carbonate e. g. in rotaliid foraminifera. Organisms such as calcareous algae or echinoderms that thicken existing calcareous parts as weIl as growing in length and breadth are the most difficult to analyse. All organisms analysed show temperature related oxygen-isotope fractionation. The most recent groups fractionate oxygen isotopes in accordance with established d18O temperature relationships (Tab. 18, Fig. 42). These groups are deep-sea foraminifera, planktonic foraminifera, serpulids, brachiopods, bryozoa, almost all molluscs, sea urchins, and fish (otoliths). A second group of organisms including the calcareous algae Padina, Acetabularia, and Penicillus, as weIl as barnacles, cause enrichment of the heavy isotope 18O. Finally, the calcareous algae Amphiroa, Cymopolia and Halimeda, the larger foraminifera, corals, starfish, and holothurians cause enrichment of the lighter isotope 16O. Organisms causing non-equilibrium fractionation also record seasonal temperature variations within their skeletons which are reflected in stable-oxygen-isotope patterns. With the exception of the green algae Halimeda and Penicillus, all organisms analysed show lower d13C values than calculated equilibrium values (Tab. 18, Fig. 42). Especially enriched with the lighter isotope 12C are animals such as hermatypic corals and larger foraminifera which exist in symbiosis with other organisms, but also ahermatypic corals, starfish, and holothurians. With increasing age of the organisms, seven different d13C trends were observed within the skeletons. 1) No d13C variations are observed in deep-sea foraminifera presumably due to relatively stable environmental conditions. 2) Lower d13C values occur in miliolid larger foraminifera and are possibly related to increased growth with increasing age of the foraminifera. 3) Higher values are found in planktonic foraminifera and rotaliid larger foraminifera and can be explained by a slowing down of growth with increasing age. 4) A sudden change to lower d13C values at a distinct shell size occurs in molluscs and is possibly caused by the first reproductive event. 5) A low-high-Iow cycle in calcareous algae is possibly caused by variations in the stage of calcification or growth. 6) A positive correlation between d18O and d13C values is found in some hermatypic corals, all ahermatypic corals, in the septa of Nautilus and in the otoliths of fish. In hermatypic corals from tropical areas, this correlation is the result of the inverse relationship between temperature and light caused by summer cloud cover; in other groups it is inferred to be due to metabolic processes. 7) A negative correlation between d18O and d13C values found in hermatypic corals from the subtropics is explained by the sympathetic relationship between temperature and light in these latitudes. These trends show that the carbon isotope fractionation is controlled by the biology of the respective carbonate producing organisms. Thus, the carbon isotope distribution can provide information on the symbiont-host relationship, on metabolic processes and calcification and growth stages during ontogenesis of calcareous marine organisms.
Resumo:
Coral reef organisms are increasingly and simultaneously affected by global and local stressors such as ocean acidification (OA) and reduced light availability. However, knowledge of the interplay between OA and light availability is scarce. We exposed 2 calcifying coral reef species (the scleractinian coral Acropora millepora and the green alga Halimeda opuntia) to combinations of ambient and increased pCO2 (427 and 1073 µatm, respectively), and 2 light intensities (35 and 150 µmol photons/m**2/s) for 16 d. We evaluated the individual and combined effects of these 2 stressors on weight increase, calcification rates, O2 fluxes and chlorophyll a content for the species investigated. Weight increase of A. millepora was significantly reduced by OA (48%) and low light intensity (96%) compared to controls. While OA did not affect coral calcification in the light, it decreased calcification in the dark by 155%, leading to dissolution of the skeleton. H. opuntia weight increase was not affected by OA, but decreased (40%) at low light. OA did not affect algae calcification in the light, but decreased calcification in the dark by 164%, leading to dissolution. Low light significantly reduced gross photosynthesis (56 and 57%), net photosynthesis (62 and 60%) and respiration (43 and 48%) of A. millepora and H. opuntia, respectively. In contrast to A. millepora, H. opuntia significantly increased chlorophyll content by 15% over the course of the experiment. No interactive effects of OA and low light intensity were found on any response variable for either organism. However, A. millepora exhibited additive effects of OA and low light, while H. opuntia was only affected by low light. Thus, this study suggests that negative effects of low light and OA are additive on corals, which may have implications for management of river discharge into coastal coral reefs.