3 resultados para OMA DRM
em Publishing Network for Geoscientific
Resumo:
Investigation of the ferromagnetic fraction of sediments from the Brazil Basin and Rio Grande Rise shows that its main constituents are magnetite and hematite. The magnetite is detrital, but the hematite is both detrital and chemical in origin. Magnetite is the main carrier of the natural remanent magnetization (NRM); therefore, the NRM is detrital remanent magnetization (DRM). In a number of cases, the change of magnetic parameters along the stratigraphic column permits some refinement of the previously defined boundaries of the lithologic units.
Resumo:
Component natural remanent magnetizations derived from u-channel and 1-qcm discrete samples from ODP Site 919 (Irminger Basin) indicate the existence of four intervals of negative inclinations in the upper Brunhes Chronozone. According to the age model based on planktic oxygen isotope data, these "excursional" intervals occur in sediments deposited during the following time intervals: 32-34 ka, 39-41 ka, 180-188 ka and 205-225 ka. These time intervals correspond to polarity excursions detected elsewhere, known as Mono Lake, Laschamp, Iceland Basin and Pringle Falls. The isotope-based age model is supported by the normalized remanence (paleointensity) record that can be correlated to other calibrated paleointensity records for the 0-500 ka interval, such as that from ODP Site 983. For the intervals associated with the Mono Lake and Laschamp excursions, virtual geomagnetic poles (VGPs) reach equatorial latitudes and mid-southerly latitudes, respectively. For intervals associated with the Iceland Basin and Pringle Falls excursions, repeated excursions of VGPs to high southerly latitudes indicate rapid directional swings rather than a single short-lived polarity reversal. The directional instability associated with polarity excursions is not often recorded, probably due to smoothing of the sedimentary record by the process of detrital remanence (DRM) acquisition.
Resumo:
The Arctic oceans have been fertile ground for the recording of apparent excursions of the geomagnetic field, implying that the high latitude field had unusual characteristics at least over the last 1-2 Myrs. Alternating field demagnetization of the natural remanent magnetization (NRM) of Core HLY0503-6JPC from the Mendeleev Ridge (Arctic Ocean) implies the presence of primary magnetizations with negative inclination apparently recording excursions in sediments deposited during the Brunhes Chron. Thermal demagnetization, on the other hand, indicates the presence of multiple (often anti-parallel) magnetization components with negative inclination components having blocking temperatures predominantly, but not entirely, below ~ 350 °C. Thermo-magnetic tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicate that the negative inclination components are carried by titanomaghemite, presumably formed by seafloor oxidation of titanomagnetite. The titanomaghemite apparently carries a chemical remanent magnetization (CRM) that is partially self-reversed relative to the detrital remanent magnetization (DRM) carried by the host titanomagnetite. The partial self-reversal could have been accomplished by ionic ordering during oxidation, thereby changing the balance of the magnetic moments in the ferrimagnetic sublattices.