29 resultados para Novikov Cohomology

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineralogy of suspended matter from surface and bottom waters has been studied at two sites in the Barents Sea. Along with terrigenous minerals, particulate matter samples contain authigenic mineral phases of iron and manganese oxyhydroxides. Mn-feroxyhite, Fe-vernadite, goethite, and proto-ferrihydrite have been identified in samples from the surface waters, whereas birnessite and non-ferruginous vernadite have been found in samples from the bottom waters. Formation of suspended manganese minerals in the bottom waters is explained by an additional Mn supply from underlying reduced sediments during their early diagenesis and oxygen depletion in the near-bottom nepheloid layer. Bacteria are supposed to take part in the authigenic mineral formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid potentiometric method for measuring ionic and total fluorine concentrations in sea water with aid of a fluorine-selective electrode is described and corresponding measurements in the 0-2000 m layer of the western Sargasso Sea and in the Gulf Stream are given. Preparation of samples and performance of measurements are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental data obtained show that oceanic and marine ferromanganese nodules and crusts are natural ion-exchangers. Exchange capacity of oceanic ferromanganese aggregates is much higher than that of shallow-water marine ones, whereas reactivities of exchange cations (Na, K, Ca, and Mg) are almost equal in both.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An express potentiometric method for determination of total and ionic concentrations of fluorine in sea water was developed, using a fluorine selective electrode as a sensor, with a lanthanum fluoride single crystal membrane. The minimum fluorine concentration measurable by the method is 0.2 mg/liter. Relative accuracy of determinations is +/-4% in 1 to 2 mg/liter fluorine concentration range. One determination requires no more than 20 minutes.