463 resultados para Nose.

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages are a widespread tool to understand changes in organic matter flux and bottom-water oxygenation and their relation to paleoceanographic changes in the Upper Cretaceous oceans. In this study, assemblage data (diversity, total number, and number per species and gram) from Deep Sea Drilling Project (DSDP) Site 390 (Blake Nose, western North Atlantic) were processed for the lower Maastrichtian (Globotruncana falsostuarti - Gansserina gansseri Planktic Foraminiferal Zone). These data document significant changes in nutrient flux to the sea floor as well as bottom-water oxygenation during this time interval. Parallel to the observed changes in the benthic foraminiferal assemblages the number of inoceramid shells decreases, reflecting also a significant increase in bottom-water oxygenation. We speculate, that these data could reflect the onset of a shift from warmer low-latitude to cooler high-latitude deep-water sources. This speculation will predate the major reorganization of the oceanic circulation resulting in a circulation mode similar to today at the Early/Late Maastrichtian boundary by ~1 Ma and therefore improves our understanding of Late Cretaceous paleoceanography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use an X-ray fluorescence (XRF) Core Scanner to obtain records of elemental concentrations in sediment cores from Ocean Drilling Program (ODP) Leg 171B, Site 1052 (Blake Nose, Atlantic margin of northern Florida).This record spans the Middle to Late Eocene, as indicated by bio- and magnetostratigraphy, and displays cyclicity that can be attributed to the orbital forcing of a combination of climate, ocean circulation, or productivity. We use the XRF counts of iron and calcium as a proxy of the relative contribution from calcium carbonate and terrestrial material to construct a new composite depth record. This new composite depth record provides the basis to extend the astronomically calibrated geological time scale into the Middle Eocene and results in revised estimates for the age and duration of magnetochrons C16 through C18. In addition, we find an apparent change in the dominance of orbitally driven changes in obliquity and climatic precession at around 36.7 Ma on our new time scale. Long term amplitude modulation patterns of eccentricity and obliquity in the data do not seem to match the current astronomical model any more, suggesting the possibility of new constraints on astronomical calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments recovered at lower bathyal ODP Site 1049 on Blake Nose (Northwestern Atlantic) offer an opportunity to study environmental changes at the Cretaceous/Paleogene (K/P) boundary relatively close to the Chicxulub impact structure on the Yucatan peninsula, Mexico. In Hole 1049C, the boundary is located at the base of a 9-cm-thick layer with abundant spherules, considered to be impact ejecta. Uppermost Maastrichtian oozes below, and lowermost Danian pelagic oozes above the spherulebed contain well-preserved bathyal benthic foraminifera. The spherule-bed itself, in contrast, contains a mixture of shallow (neritic) and deeper (bathyal) species, and specimens vary strongly in preservation. This assemblage was probably formed by reworking and down-slope transport triggered by the K/P impact. Across the spherule-bed (i.e., the K/P boundary) only ~7% of benthic foraminiferal species became extinct, similar to the low extinction rates of benthic foraminifera worldwide. Quantitative analysis of benthic foraminiferal assemblages and morphogroups in the >63-µm size fraction indicates a relatively eutrophic, stable environment during the latest Maastrichtian, interrupted by a sudden decrease in the food supply to the benthos at the K/P boundary and a decrease in diversity of the faunas, followed by a stepped recovery during the earliest Danian. The recovery was probably linked to the gradual recovery of surface-dwelling primary producers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The muricate planktonic foraminiferal genera Morozovella and Acarinina were abundant and diverse during the upper Palaeocene to middle Eocene and dominated the tropical and subtropical assemblages. A significant biotic turnover in planktonic foraminifera occurred in the latest middle Eocene with a notable reduction in the acarininid lineage and the extinction of the morozovellids. These genera are extensively employed as palaeoclimatic and biostratigraphic markers and, therefore, this turnover episode is an important event in the record of the Cenozoic planktonic foraminifera. Sediments from the western North Atlantic (Ocean Drilling Program Site 1052) were examined in order to investigate these extinction events, in terms of both timing and mechanisms. Biostratigraphic events of the middle and late Eocene have been examined with a sampling resoluti on of approximately 3 kyr. These have been calibrated to the magneto- and astrochronology to accurately define the timing of key biostratigraphic events, particularly the extinction of Morozovella spinulosa which is a distinct biomarker for late middle Eocene sediments. High-resolution biostratigraphy reveals that the extinctions in the muricate group occurred in a stepwise form. The large acarininids (Acarinina praetopilensis) terminate 10 kyr prior to the extinction of M. spinulosa and small acarininids (Acarinina medizzai and Acarinina echinata) continue into the upper Eocene. High-resolution stable isotope analyses have been conducted on planktonic and benthic foraminifera from the western North Atlantic to reconstruct sea surface temperatures (SSTs) and deep water temperatures and the structure of the water column around this major biotic turnover. Whilst the extinctions of M. spinulosa and A. praetopilensis occur during a long-term cooling trend, the biotic turnover in the muricate group does not appear to be related to significant climatic change. Sea surface temperatures decrease slowly prior to the extinction events, and there is no evidence for a large-temperature shift associated with the faunal changes. The turnover event was therefore probably related to the increased surface water productivity and the deterioration of photosymbiotic partnerships with algae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution stable carbon isotope records for upper Paleocene - lower Eocene sections at Ocean Drilling Program Sites 1051 and 690 and Deep Sea Drilling Project Sites 550 and 577 show numerous rapid (40 - 60 kyr duration) negative excursions of up to 1 per mill. We demonstrate that these transient decreases are the expected result of nonlinear insolation forcing of the carbon cycle in the context of a long carbon residence time. The transients occur at maxima in Earth's orbital eccentricity, which result in high-amplitude variations in insolation due to forcing by climatic precession. The construction of accurate orbital chronologies for geologic sections older than ~ 35 Ma relies on identifying a high-fidelity recorder of variations in Earth's orbital eccentricity. We use the carbon isotope records as such a recorder, establishing a robust orbitally tuned chronology for latest Paleocene-earliest Eocene events. Moreover, the transient decreases provide a means of precise correlation among the four sites that is independent of magnetostratigraphic and biostratigraphic data at the <10^5-year scale. While the eccentricity-controlled transient decreases bear some resemblance to the much larger-amplitude carbon isotope excursion (CIE) that marks the Paleocene/Eocene boundary, the latter event is found to occur near a minimum in the ~400-kyr eccentricity cycle. Thus the CIE occurred during a time of minimal variability in insolation, the dominant mechanism for forcing climate change on 104-year scales. We argue that this is inconsistent with mechanisms that rely on a threshold climate event to trigger the Paleocene/Eocene thermal maximum since any threshold would more likely be crossed during a period of high-amplitude climate variations.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: